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Prahlad T. Ram 
Functional proteomic analysis of signaling networks and response to targeted therapy 
DOD-IDEA BC044268 
 
Progress report year 3  
 
Introduction 
The purpose of the research done has been to determine the regulation of the EGFR network and 
identify how manipulations of the network alter signal flow to bypass targeted inhibitions. The 
scope of the project is to understand the network and determine which molecules have to be 
targeted to inhibit tumor cell proliferation. In the past year we have been very active in our 
research efforts. We have accomplished many of the tasks laid out in the SOW. Task 1A, 1B, 1C, 
1D, and 2A were completed during years 1 and 2. We have been working on Tasks 2B and 2A 
during the past funding year and the data from these two tasks are shown in this annual update. 
 
Body 
During this year we completed the first two aims of the proposal and expanded on these aims to 
include targeted inhibitors in addition to the siRNA in the initial proposal. The reason for 
including the targeted pharmacological inhibitors was the clinical relevance as these drugs are in 
early stage clinical trails. We used an AKT inhibitor, MEK inhibitor and two EGFR kinase 
inhibitors. We determined the phospho-proteomic profiles after pharmacological treatment in the 
panel of 6 breast tumor cell lines (MDA-231, BT549, MCF10A, T47D, MDA488, SKBR3). We 

discovered an unexpected finding 
in that MEK inhibitors were 
increase AKT phosphorylation in 
these cell lines. This was an 
important finding which we have 
been following in addition to the 
goals of the project.  
 
 
Figure 1. Reverse phase protein 
array data from BT549 and MDA-
MB-231 breast tumor cells. 
 
The cells were serum starved 
overnight and treated with the 
EGFR inhibitor Iressa, or the MEK 
inhibitor PD98059 or the AKT 
inhibitor Perifosine for 2 hours. 
Control cells were treated with 
DMSO. The cells were then 
stimulated with EGF or vehicle for 
30 minutes and the cells were then 
lysed. The soluble proteins were 
spotted onto the reverse phase 
protein arrays, printed on Fast20 
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nitrocellulose coated slides and probed with antibodies to the different phosphor and total 
proteins of the EGFR network. The data shows the quantitative changes and is visualized in the 
heat map, where red indicates high and green indicates low. The lysates were probed with 40 
different antibodies.  
 
 
Figure 2. 
Magnification of the 
MEK inhibitor data 
shows an increase in 
AKT phosphorylation 
when cells are treated 
with the MEK inhibitor. 
 
Form the data we 
observed that MEK 
inhibition was leading 
to an increase in AKT 
phosphorylation. We 
tested this in a panel of 
breast tumor cell lines 
and we observed that 
in all cell lines 
inhibiting MEK 
increased AKT 
phosphorylation. 
 

Figure 3. Time course of the MEK inhibitor shows that the increase in AKT phosphorylation is 
present upto 24 hours 
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Figure 4. The increase in AKT is present with three structurally different MEK inhibitors  

 
 
Figure 5. We developed a computational model of a EGFR-MEK-MAPK-AKT network and 
simulated regulatory loops that could increase AKT phosphorylation when MEK was inhibited.  
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Figure 6. Computational model 
prediction of changes in AKT 
phosphorylation in the presence of 
MEK inhibitor. 
Using the computational model we 
predicted the response of AKT to MEK 
inhibition and compared the model to 
experimental data. We observed that 
the model could predict the relative 
increases/decreases correctly but not 
the amplitude of the changes. To model 
the amplitude also will entail detailed 
biochemistry, instead we have decided 
for now to see if the model as it stands 
can have a functional predictive use.  
 

 
 
Figure 7. Modeling 
prediction of combinations 
to inhibit MAPK and AKT . 
We used the model to 
predict combinations that 
can be used with the MEK 
inhibitor such that AKT is 
not increased. We tested 
these predictions on cell 
lines and assayed changes in 
proliferation. 
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Figure 8. Experimental testing of modeling predictions. 
 
We measured changes in proliferation with the different combinations and observed that a MEK 
inhibitor in combination with EGFR inhibitor decreased proliferation in cell lines with either Ras 
mutation or PTEN loss. Currently we are testing the other prediction from the model. 
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Key research accomplishments 
Task 3. We have developed and made predictions from our model to identify combination of 
targets and are experimentally testing these predictions. 
.  
Reportable outcomes 
From the work that we have done in the past year we have 3 papers published and 2 manuscripts 
submitted. In addition the support of this DOD grant was instrumental in obtaining a R01 grant 
from the NCI on targeted therapy in breast cancer. 
 
Conclusions 
We have developed a computational model of the signaling network. We have also generated 
data of the dynamic changes in signaling and integrated the biological data with the 
computational model. We have expanded the initial plan to include pharmacological inhibitors in 
addition to siRNA and are currently finishing up the final aim of the project.  
 
Reference (papers from our work published/submited this year)  
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Muller M, Obeyesekere M, Mills GM, Ram PT Network topology determines dynamics of the 
mammalian MAPK1,2 signaling network: bi-fan motif regulation of C-Raf and B-Raf isoforms 
by FGFR and MC1R. FASEB J 2008  22:1393-403 
 
Ruths D, Nakhleh L, Ram PT Rapidly Exploring Structural and Dynamic Properties of Signaling 
Networks Using PathwayOracle BMC Systems Biology 2008 In Press 
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The Signaling Petri Net-Based Simulator: A Non-
Parametric Strategy for Characterizing the Dynamics of
Cell-Specific Signaling Networks
Derek Ruths1*, Melissa Muller2, Jen-Te Tseng2, Luay Nakhleh1, Prahlad T. Ram2

1 Department of Computer Science, Rice University, Houston, Texas, United States of America, 2 Department of Systems Biology, University of Texas M. D. Anderson

Cancer Center, Houston, Texas, United States of America

Abstract

Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale
and complexity of these networks, however, render their analysis using experimental biology approaches alone very
challenging. As a result, computational methods have been developed and combined with experimental biology
approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on
either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these
typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of
dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical
reactions to predict the network’s dynamic behavior. These predictions provide detailed insights into the properties that
determine aspects of the network’s structure and behavior. However, the difficulty of obtaining numerical values of kinetic
parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed
that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental
observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling
Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling
network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks,
and provide insights into the trends of molecules’ activity-levels in response to an external stimulus, based solely on the
network’s connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is
publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling
network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the
activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our
method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not
agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental
observations.
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Introduction

Signaling networks are complex, interdependent cascades of

signals that process extracellular stimuli, received at the plasma

membrane of a cell, and funnel them to the nucleus, where they

enter the gene regulatory system. These signaling networks

underlie how cells communicate with one another, and how they

make decisions about their phenotypic changes, such as division,

differentiation, and death. Further, malfunction of these networks

may alter phenotypic changes that cells are supposed to undergo

under normal conditions, and potentially lead to devastating

consequences on the organism. For example, altered cellular

signaling networks can give rise to the oncogenic properties of

cancer cells [1,2], increase a person’s susceptibility to heart disease

[3], and have been shown to be responsible for many other

devastating diseases such as congenital abnormalities, metabolic

disorders and immunological abnormalities [1,4].

In light of the crucial role signaling networks play in the

proper functioning of cells and biological systems as a whole, and

given the grave consequences their alterations may have on the

behavior of cells, elucidating the connections in the networks,

and understanding how they operate, are two central questions

in cell biology. However, unlike the ‘‘pathway view’’ of signaling

as linear cascades, signaling networks are highly interconnected,

involve cross-talk among several pathways, and contain feedback

and feed-forward loops [5]. Figure 1 illustrates this issue in a

network of signaling cascades, which is stimulated by EGF and

contains several players in cancer pathways. For example,

multiple paths lead from EGFR to mTOR-Raptor, resulting in

feed-forward loops. Some of these paths activate mTOR-Raptor,

PLoS Computational Biology | www.ploscompbiol.org 1 2008 | Volume 4 | Issue 2 | e1000005



while others inhibit it. Further, the network contains two

feedback loops, one from p70S6K to EGFR and another from

MAPK1,2 to EGFR.

These and other complexities make it very difficult to analyze

signaling networks by experimental biology approaches alone. As a

result, computational methods have been developed and com-

bined with experimental biology approaches, producing powerful

tools for the analysis of these networks [6]. These computational

methods produce hypotheses that guide the experimental design,

leading to more informative experiments, while experimental

results help refine the computational models, resulting in more

accurate predictive tools.

In a recent survey, Papin et al. classified existing computational

methods into two categories: structural and dynamic network analysis

[6]. Structural network analysis is mainly based on the network’s

connectivity, which is typically readily available from numerous

public signaling network databases (e.g., [7–9]), and makes

inferences about global network properties as well as individual

protein functions. This category can be further refined into two

sub-categories, both of which are solely based on connectivity

information, yet differ in the type of answers they provide. For

example, the methods described in [10–13] infer ‘‘static’’

properties of the network, such as numbers of paths, reachability

results, etc. In a series of papers, Palsson and co-workers [6,14–16]

introduced extreme pathway analysis techniques, which are more

appropriate for metabolic networks, yet have been applied to

signaling networks to characterize various properties of networks,

such as redundancy and cross-talk. Similar analyses have also been

Figure 1. The Model Signaling Network. A MAPK1,2 and AKT network downstream from EGFR, which we assembled from various sources, and used
for the case study analysis in this work. An edge from u to v ending with an arrow indicates an activating reaction, while an edge ending with a plunger
indicates an inhibiting reaction. With the exception of TSC2, all nodes have self-inhibitory edges, which were added to model the external cellular
machinery that regulates the concentration of the active form of the proteins [36–43]. Colors were selected to enhance readability of the network.
doi:10.1371/journal.pcbi.1000005.g001

Author Summary

Many cellular behaviors including growth, differentiation,
and movement are influenced by external stimuli. Such
external stimuli are obtained, processed, and carried to the
nucleus by the signaling network—a dense network of
cellular biochemical reactions. Beyond being interesting
for their role in directing cellular behavior, deleterious
changes in a cell’s signaling network can alter a cell’s
responses to external stimuli, giving rise to devastating
diseases such as cancer. As a result, building accurate
mathematical and computational models of cellular
signaling networks is a major endeavor in biology. The
scale and complexity of these networks render them
difficult to analyze by experimental techniques alone,
which has led to the development of computational
analysis methods. In this paper, we present a novel
computational simulation technique that can provide
qualitatively accurate predictions of the behavior of a
cellular signaling network without requiring detailed
knowledge of the signaling network’s parameters. Our
approach makes use of recent discoveries that network
structure alone can determine many aspects of a
network’s dynamics. When compared against experi-
mental results, our method correctly predicted 90% of
the cases considered. In those where it did not agree, our
approach provided valuable insights into discrepancies
between known network structure and experimental
observations.

Signaling Petri Net-Based Simulator
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formalized and conducted using the principles of S- and T-

invariants in Petri Nets (e.g., [17–20]).

Methods for dynamic network analysis use, in addition to the

network connectivity, the kinetic parameters of the biochemical

reactions. The goal of these methods is to model the actual kinetics of

the network and obtain through simulation the actual quantities of

proteins involved in signal transduction. One of the most widely used

techniques in this category is systems of ordinary differential

equations (ODEs) (e.g., [21–25]). Within such a system, each

reaction is modeled by a series of equations connecting reactant

concentrations to product concentrations through differential

relationships involving reaction rate constants. Given the difficulty

of obtaining the numerical values of kinetic parameters [19,26] and

standardization of the parameters and models [27], the applicability

of these methods is limited in practice to small-scale networks [6,28].

Petri Nets have also been used for simulating the dynamics of

signaling networks [29–31]. While such approaches somewhat relax

the necessity for biologically exact kinetic parameters, current Petri

Net-based approaches still require the selection of weights and/or

probability distributions for individual interactions in the model. As a

result, selecting the values for Petri Net parameters presents

challenges similar to those encountered in ODE modeling.

Structural network analysis assumes mainly connectivity infor-

mation about the model, and provides insights into global, static

properties of the network. Dynamic analysis in general assumes

numerical values of the kinetic parameters, and provides predictions

of network dynamics by quantifying the change in concentration and

activity-level (the concentration of the active form of a given protein)

of the individual proteins and complexes in the network. To obtain a

more detailed analysis one must either solve parameter optimization

problems for a large number of molecules and interactions or

conversely experimentally derive these values.

Given the difficulty of obtaining numerical values of kinetic

parameters [19,26] and the implications this has on the

applicability of dynamic analysis methods [6], it is imperative to

develop innovative approaches that combine the attractive low

requirements of structural network analysis techniques with the

detailed answers provided by dynamic analysis techniques—

specifically the response of individual proteins to signals which

travel through the network.

Several recent efforts in this direction have produced encour-

aging results. An approach using a boolean network simulation

method, based on work in the area of gene regulatory networks,

successfully used only signaling network connectivity information

to predict the speed of signal transduction through a stomata

signaling network [32]. The use of piecewise linear systems of

ODEs have also had success in analyzing some of the dynamics of

gene regulatory and signaling networks without using exact kinetic

parameters (e.g., [33–35]). The obstacle to extending the method

in [32] to model individual protein responses to signal transduc-

tion is the boolean model used to discretize the signal as it

propagates. In a boolean model, the signal is either present or

absent at each node in the network. Such two-state models of

signal transduction simplify the underlying biochemistry to the

point where it is difficult to model changes in protein

concentration more precisely than present or absent. Modeling

such gradients of concentration changes and the effects of those

changes may be important to predicting individual protein

responses, motivating our effort to devise more fine-grained ways

to model and simulate the dynamics of signaling networks. The

challenges to using linear-piecewise ODEs to model a signaling

network center around the issue of identifying all the ODEs

required to model the underlying network as well as scalability

issues involved in simulating large systems of ODEs.

In this paper, we extend the synchronized Petri net model and

firing policy such that the resulting framework models cellular

signaling processes. We call this extension the signaling Petri net

(SPN). By coupling this with a novel strategy for Petri net

execution and sampling, we obtain a method capable of

characterizing some dynamics of signaling networks while using

only connectivity information about these networks.

To validate our method, we studied the MAPK1,2 and AKT

network shown in Figure 1 in two breast cancer cell lines. This

network was chosen because the EGFR receptor and its

downstream signaling network play a very important role in

development, differentiation, and oncogenic transformation. Two

very important signaling molecules within the cell are MAPK and

AKT, both of which can be activated by EGFR, and contains

several potential regulatory paths between them. We constructed a

model network of EGF regulation of MAPK and AKT which

includes several feedback and feed-forward loops all of which were

constructed based on experimental findings from different

laboratories around the world [36–43]. We analyzed, both

experimentally and computationally, the change in activity-level

of several proteins in response to targeted manipulation of TSC2

and mTOR-Raptor. Using the model network, the predictions

from our method agreed with experimental results in over 90% of

the cases, and in those where they did not agree, our method

correctly identified discrepancies that could be traced back to

incompleteness in the network connectivity model.

Materials and Methods

Our approach combines elements of the boolean network

simulator in [18] with a synchronized Petri net model [44]. In [18],

Li et al. present a non-parametric approach that accurately predicts

the speed of signal propagation through a network. However, as their

method assumes a binary model of activation—every protein is either

active (true) or inactive (false)—modeling a range of activity-levels is

difficult. Petri nets, while able to model concentrations using tokens,

require parameters describing the kinetic characteristics of the

network, which are typically difficult to obtain.

Our method models signal flow as the pattern of token

accumulation and dissipation within places (proteins) over time

in the Petri net. Transitions in the network represent directed

protein interactions; each transition models the effect of a source

protein on a target protein. Through transition firings, the source

can influence the number of tokens assigned to the target, called

the token-count, modeling the way that signals propagate through

protein interactions in cellular signaling networks.

In order to overcome the issue of modeling reaction rates in the

network, signaling dynamics are simulated by executing the

signaling Petri net (SPN) for a set number of steps (called a run)

multiple times, each time beginning at the same initial marking.

For each run, the individual signaling rates are simulated via

generation of random orders of transition firings (interaction

occurrences). When the results of a large enough number of runs

are averaged together, we find that the series of token-counts

correlate with experimentally measured changes in the activity-

levels of individual proteins in the underlying signaling network. In

essence, the tokenized activity-levels computed by our method

should be taken as abstract quantities whose changes over time

correlate to changes that occur in the amounts of active proteins

present in the cell. It is worth noting that some of the most widely

used experimental techniques for protein quantification—western

blots and microarrays—also yield results that are treated as

indications, but not exact measurements, of protein activity-levels

within the cell. Thus in some respects, the predictions returned by

Signaling Petri Net-Based Simulator
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our SPN-based simulator can be interpreted like the results of a

western blot or microarray experiment looking at changes relative

to ‘‘control’’.

The key insight behind our approach is the assumption that,

while all network parameters determine the actual signal

propagation to some extent, the network connectivity is the most

significant single determinant. While this is clearly a gross

simplification, several researchers have observed that the connec-

tivity of a biological network dictates, to a great extent, the

network’s dynamics [18,45–47]. Some have conjectured that

biological network connectivities have evolved to have a stabilizing

effect on the overall network behavior, making the network more

resilient to local fluctuations in other network parameters such as

reaction rates and protein binding affinities [45,47]. Here we

present the signaling Petri net (SPN) model and the signaling Petri

net-based simulator whose designs collectively utilize this assump-

tion and couple it with a Petri net tokenization scheme that

quantifies the changes in protein activity-levels that occur as

signals propagate through the network. In the following sections,

we describe the synchronized Petri net, how we extended it to

create the signaling Petri net, and a novel strategy for executing

the signaling Petri net to simulate signaling network dynamics.

Petri Nets
A Petri net is a graph that consists of two types of nodes, places,

and transitions [44]. Edges in the graph, called arcs, are directed and

connect places to transitions or transitions to places. Thus, the

Petri net is a bipartite graph. Formally, a Petri net is a 4-tuple

Q = ÆP,T,I,Oæ where

P = {p1,p2,…,pm} is the set of places,

T = {t1,t2,…,tn} is the set of transitions,

I = {i1,i2,…,ik} is the set of input arcs where for all (u,v)MI, uMP

and vMT, and

O = {o1,o2,…,ol} is the set of output arcs where for all (u,v)MI, uMT

and vMP.

In order to simulate a dynamic process, a number of tokens is

assigned to each place in order to indicate the presence of some

quantitative property. This assignment of tokens to places encodes

the state of the system and is called a marking, denoted m. A

marked Petri net, R = ÆQ,m0æ, is a Petri net with a marking m0, called

the initial marking. For the remainder of this paper, the term Petri

net (PN) refers to a marked Petri net.

Changes in the state of the system are simulated by executing the

Petri net—evaluating the effect of transitions on the marking of the

network. These changes in marking are induced by sequential firing

one or more transitions. When a transition fires, it removes a token

from each place connected to it by input arcs and adds a token to

each place connected to it by output arcs. The number of tokens

removed from inputs and added to outputs can be specified by

weighting the input arcs. However, as our extension does not use

this weighting property, we do not consider this very common PN

formulation here.

A transition can only fire when it is enabled, meaning that each of

its input places has at least one token in the current marking. If a

transition t, when fired on a marking m1, produces marking m2,

then we write m1|tæm2.

This notation can be extended to represent the effect of firing a

series of transitions. A firing sequence, s= (t1,t2,…,tj) is a sequence of

transitions. The sequence’s cumulative effect on the system’s state

is denoted m0|sæmf where m0 is the initial marking and mf is the

marking produced by the firing of the sequence of transitions in

the order specified in s. In this paper, we write ms
g to indicate the

marking produced by the first g transitions in s. Therefore, in the

above example, ms
0~m0 and ms

sj j~mf .

For a more complete introduction to types of Petri nets and

their properties, we refer the reader to [44].

Synchronized Petri nets. Synchronized Petri nets model

systems in which the firing of a transition is triggered by a specific

event that occurs in the environment. The marked Petri net is

extended to include a set of these events and a mapping function

that assigns an event to each transition. When transition t’s

assigned event occurs, transition t is fired. Formally, a

synchronized Petri net is a 3-tuple ÆR,E,Syncæ, where [44]:

R is a marked Petri net,

E = {e1,e2,…,es} is a set of events, and

Sync:TRE<{e} maps each transition in the Petri net to an

event. Event e is the always occurring event. Any transition associated

with e is always immediately fired upon becoming enabled.

When executing a synchronized Petri net, transition t is fired

when its associated event e = Sync(t) occurs. The order in which

events are generated depends upon the environment which

generates them. Just as in the marked Petri net, when a transition

fires, it removes one token from each place connected by input

arcs and gives one token to each place connected by output arcs.

As will be discussed in the next sections, we extend the

synchronized Petri net paradigm to model the dynamics of a

signaling network. To our knowledge, ours is the first use of the

synchronized Petri net to model biochemical systems. In principle

it is well suited to signaling networks since places represent

proteins, tokens represent concentrations, and transitions represent

directed protein interactions. A model of signaling event

occurrence can be used to generate events and fire transitions,

providing a way of simulating the signaling network’s behavior.

These and other design details will be discussed in the next section.

The Signaling Petri Net-Based Simulator
A high-level sketch of our simulator is given is Figure 2. Details

and rationale for specific design decisions will be discussed in

subsequent sections.

During the simulation, the input signaling Petri net is executed

multiple times on a firing sequence constructed by the signaling

event generator. The signaling event generator imposes an

ordering on transition firing such that it creates a two-time scale

simulation. The smaller time scale is discretized as the firing of a

single transition. This unit is referred to as the firing time scale.

Firing steps are nested within a larger time scale, called time blocks,

in which each transition is fired exactly once. Thus, there are |T|

firings per block. Since the simulation is run for the specified

number of time blocks, B, there are B|T| firing steps in the

simulation.

The time structure for an example simulation is illustrated in

Figure 3. This dual-time approach is necessitated by the rate

parameter sampling strategy we employ. Since the rate parameters

are not known, our method executes many simulation runs (Step 2 in

Figure 2) in order to sample the space of possible rate parameters.

The markings returned by these runs are then averaged (Step 3 in

Figure 2). The only requirement placed on the different rate

parameter values is that all events occur within the same larger time

frame—the time block. Therefore, within every time block all edges

are evaluated once, though not necessarily in the same order.

This idea of evaluating random event orderings within a two-

time scale system has appeared before in the domain of

transcriptional networks [48]. In that study, Chaves et al.

employed a two-time scale formulation of network updates similar

in concept to the one we describe here. In their work, they

assumed a boolean model of regulation and characterized the
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effect of different relative rates of transcription within the same

network on the final steady state reached. In contrast, our method

is designed to operate on tokenized models of signaling networks

with the ultimate intent of predicting the activity-level changes of

proteins in the underlying signaling network over time.

In the next sections, we discuss in greater detail the core design

decisions underlying our method: the signaling Petri net, transition

firing, signaling network event generator, constructing the initial

marking for the model, and sampling signaling rates. We then

discuss how our strategy can be used to predict the outcome of

perturbation experiments.

The Signaling Petri Net
The goal of our method is to predict the signal flow through a

cell-specific network under specific experimental conditions. As a

result, the signaling Petri net model must characterize the

connectivity of the signaling network, the connectivity-level

network properties that are unique to the cell type and

experimental conditions under which the network is being studied,

and the signaling processes of activation and inhibition.

The signaling Petri net is a synchronized Petri net with: 1) a

specific way of modeling activating and inhibiting interactions

using places, transitions, and arcs; 2) a one-to-one correspondence

between events and transitions such that every transition is

associated with a unique event; 3) modified rules regarding how

many tokens are moved in response to a transition firing; and 4) a

signaling network event generator.

Places correspond to the activated forms of signaling proteins.

The number of tokens assigned to place p in marking ms, ms(p),

abstractly represents the amount of active protein p present in that

network state. Signaling interactions are modeled using transitions

and their connected input and output arcs. Each transition, t, is

associated with a unique signaling event, e, such that when e

occurs, transition t fires. Figure 4 shows the equivalent signaling

Petri net for a signaling network.

Formally, a signaling Petri net is a 3-tuple S = ÆR,E,Syncæ, where:

R is a marked Petri net,

E is a set of signaling events such that |E| = |T| and there is no

always occurring event, and

Sync:TRE is a one-to-one mapping which assigns each

transition a unique signaling event.

The initial marking of a signaling Petri net, m0, represents the

state of rest from which the network is starting and being simulated.

Proteins whose concentrations are known to be high can be given a

large number of tokens, and those whose concentrations are known

to be low can be assigned few or zero tokens. Attention to the initial

marking is central to modeling cell-specific networks. In many cell

lines, specific proteins are known to contain mutations that render

them perpetually active or inactive [49]. Furthermore, experimental

studies frequently involve the targeted manipulation of various

proteins within the network. Both of these phenomena induce state

changes in certain proteins at various time points that must be

modeled. The way in which these are modeled will be discussed

when the simulator design is explained.

Transition Firing
When a signaling interaction ARB (A activates B) or AxB (A

inhibits B) occurs, it has the effect of changing the state of the system

by modifying the activity-level of A and/or B. Thus, in the SPN

used to model this network, the associated transition, t, will fire at

Figure 2. A High-Level Outline of the Procedure for Simulating a Signaling Network. The input to the procedure is a signaling Petri net, S,
the number of time units to simulate the network for, B, and the number of runs for which to repeat the simulation, r. The random generation of
event ordering is employed to simulate the stochasticity in reaction rates and the differing times of signal arrivals.
doi:10.1371/journal.pcbi.1000005.g002

Figure 3. The Effects of Reaction Rates on Signal Propagation. (A) By changing the speed of signaling edge 3, the value of D at the end of a
single simulation step can be reversed. If edge 3 is slower than the cascade BRCxD, then D will be active. If edge 3 is faster than the cascade, then D
will be inactive. (B) An example of how the simulator might evaluate the individual edges during a run. In each time block, every edge is evaluated
once. Each edge evaluation corresponds to one time step. Note that the order of the edge evaluation is shuffled during each time block in order to
sample the space of possible relative signaling rates.
doi:10.1371/journal.pcbi.1000005.g003
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time t and produce marking mt+1 from mt. The way in which

mt+1 is computed from mt depends on the set of input and output

arcs attached to the transition as well as the number of tokens

moved by the transition.

The combination of input and output arcs connected to a

transition is determined exclusively by the type of interaction and

the transition firing model. However, different topologies,

combinations of input and output arcs, are needed to model the

different biochemical processes that mediate protein-protein

interactions in a signaling network. Here we examine four of the

most common biochemical processes, identify the corresponding

topological motifs, and ultimately devise a modeling policy best

suited for non-parametric simulation of signal flow.

In post-translational modification (PTM), a protein mediates the

addition or removal of a phospho group at a specific phosphor-

ylation site on another protein. In GTP/ATP binding, a protein

triggers the exchange of GDP (ADP) from GTP (ATP) on another

protein. In a recruitment process, a protein mediates the relocaliza-

tion of another protein to a different part of the cell. Finally, in a

complexing process, a protein binds to another protein to create a

complex, which can then participate in other reactions. In the first

two processes, the mediating protein usually acts as an enzyme

that participates in the reaction but is not consumed by the

reaction. In the latter two processes, the participating protein often

becomes unavailable to other reactions, transiently while the

protein recruitment is taking place and for longer durations when

complexing occurs. To model these two cases, we identified the

two different token-passing policies implemented by the different

topological motifs depicted in Figure 5.

Token consumption. In this policy, uPv consumes tokens in u

in order to generate new tokens for v. In order to model this, pu is

connected to transition t1 through an arc and pv is connected to t1
through an output arc. When t1 fires, some number of tokens in pu

are moved into pv. Similarly, uxv consumes tokens in u in order to

consume tokens in v. This is modeled by connecting pu to t2 with an

input arc and pv to t2 with an input arc. When t2 fires, some number

of tokens are removed from both pu and pv. This policy models a

recruitment or complexing event in which u binds to another

molecule, thereby creating a molecule of type v. A molecule of type u has

been consumed in order to generate or deactivate a molecule of type v.

Token conservation. In this policy, uPv generates new

tokens for v while conserving those in u. In order to model this, pu

is connected to transition t3 through a read arc. Node pv is

connected to t3 through an output arc. When t3 fires, some

number of tokens in pu is read (but not removed) and copied into

pv. Similarly, uxv consumes tokens in v while conserving those in

u. This is modeled by connecting pu to t4 with a read arc and pv to

t4 with an input arc. When t4 fires, some number of tokens in pu

are read and removed from pv. Enzymes will often behave in this

way: inducing a change in a molecule (v) without themselves

undergoing any change. A molecule of u has induced a change in a

different molecule of type v without itself changing state.

Ideally, for each interaction in the network, the associated

transition could be embedded in the topology corresponding to the

interaction’s underlying biochemical mechanism. However, connec-

tivity-level knowledge of the network does not provide this

information for each interaction. In the absence of these details,

we use one token-passing policy for all interactions in the network.

We implemented and tested both the consuming and conserving

policies and found that token conservation provides significantly

more accurate results when compared to experimentally derived

data. This is not surprising, as post-translational modification and

GTP/ATP binding events are responsible for many activation state

changes in signaling networks [1,50–52]. It is worth noting that our

approach does not restrict the net structure to token conserving

topologies. Thus, it is possible to use the token consumption

topologies where such processes are known to occur. However, as

our focus in this paper is designing a purely non-parametric

simulation method, we consider the use of information regarding the

biological mechanism of signaling as a potential way to further

improve the accuracy of our method’s predictions and identify this as

a direction for future work.

Figure 4. An Example Signaling Network and Its Corresponding Petri Net. An example signaling network (A) and its corresponding Petri net
(B). Each signaling protein in the network, A, B, and C, are designated as places pA, pB, and pC. Signaling interactions become a transition node and its
input and output arcs. Note that the connectivity for an activating edge differs from that of an inhibitory edge.
doi:10.1371/journal.pcbi.1000005.g004
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The transition topologies, as described above, do not designate

how the number of tokens added to or removed from pv is

determined. However, we know that in biochemical signaling

networks concentration has an effect on the strength of a

signaling event [53–55]. Specifically, the higher u’s concentra-

tion, the stronger its effect on v—the more tokens that pu has,

the more tokens of pv should be affected (generated or

consumed).

However, because of the stochastic nature of the underlying

biochemistry, it would be inaccurate to assume that all active u

molecules will always participate in an interaction with v. In order

to accommodate this observation, when transition t fires, we

randomly select the number of pu’s tokens to be involved in the

subsequent evaluation of the transition, which we call a signaling

event. Note that, according to our choice of topology, pu can always

be identified as the node connected to the transition by a read arc.

In this paper, we assume a uniform distribution for selecting the

number of tokens involved in a given signaling event, but

acknowledge that other distributions may be more appropriate

under certain circumstances and identify this as a topic deserving

further consideration.

Let ms(x) denote the number of tokens in node x at time s. For an

interaction (u,v), under the token conservation policy detailed

above, u’s token-count remains unchanged after the firing of t,

whereas v’s token-count is updated based on the following

formula:

ms vð Þ~
ms{1 vð Þzrandom 0,ms{1 uð Þð Þ if u activates v

max 0,ms{1 uð Þ{random 0,ms{1(u)ð Þf g if u inhibits v

�
,

where random(p,q) is a random integer drawn from a uniform

distribution over the range [p,q].

If we employ the policy of token passing with consumption, then

after ms(v) has been computed based on the formula above, ms(u) is

updated as:

ms uð Þ~ms{1 uð Þ{ min ms{1 uð Þ, ms vð Þ{ms{1 vð Þj jf g:

Signaling Network Event Generator
The SPN topology and transition token-number selection policy

alone do not specify the speed with which individual signaling

interactions occur. However, such rates must be accounted for

when simulating a signaling network. ODEs characteristically

model such details as reaction rate constants; parameterized Petri

nets specify these in a variety of ways including transition firing

rates and firing probabilities [17,30]. In synchronized Petri nets,

the environment controls the generation of events. Thus, the

signaling network event generator is responsible for controlling the

timing and ordering of signaling events. However, as our objective

is a non-parametric simulation method, our approach must either

estimate these parameters or operate without explicit knowledge of

them.

Estimating reaction rates using only connectivity is currently

beyond the predictive or inferential capabilities of computers.

While there has been some work in the area of predicting reaction

rates, all results of which we are aware require knowledge about

the mechanism of signaling (e.g., [56]). As a result, without

enriching the SPN model, it is doubtful that rate parameters can

be accurately estimated.

For this reason, the signaling network event generator operates

without explicit knowledge of the rate parameters. To compensate

for this ‘‘missing’’ knowledge, we make use of an observation of

signaling networks discussed earlier: a network’s connectivity

determines its dynamics. Several studies have found that the

connectivity of biochemical networks desensitizes them to small

fluctuations in the kinetic biochemical parameters [45–47].

Understood within the context of evolution – a stochastic process

that tweaks signaling network parameters across generations – this

is a highly desirable property as it ensures that an offspring

remains viable despite fluctuations in the exact tuning of its cellular

machinery. If this property holds, then small fluctuations in the

rate parameters should have a marginal effect on the overall

propagation of signal through the network. We can consider these

small effects to be noise obscuring the underlying dynamics of the

network connectivity. By taking many samples of the network

dynamics under a variety of reaction rate assignments and then

averaging these dynamics, we simultaneously reduce the noise

Figure 5. The Topological Motifs for Differing Signaling Processes. (A) The token consumption motifs for complexing and recruitment.
Transition t1 encodes activation of v by the binding or consumption of u. Transition t2 encodes deactivation of v by the binding or consumption of u.
In both cases, the number of tokens of pu decreases immediately after transitions t1 and t2 fire. (B) The token conserving motifs for PTM and GTP/ATP
binding. Transition t3 encodes enzymatic activation of v by u. Transition t4 encodes enzymatic inhibition of v by u. In both cases, the number of
tokens of pu remains unchanged immediately after transitions t3 and t4 fire.
doi:10.1371/journal.pcbi.1000005.g005
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introduced by any one rate assignment and strengthen the

underlying dynamic characteristics of the network’s connectivity.

However, since reaction rate constants can vary by several

orders of magnitude—from 10210 to 103, the task of correctly

selecting parameters close to the true parameters is non-trivial. In

fact, without having some estimate of the actual rate parameters, it

is unclear as to how to measure closeness at all. Clearly, these are

among the issues that make parameter estimation so difficult for

ODE and Petri net approaches. Since our comparisons will be

relative and not absolute, we take a relative approach to modeling

rate parameters. The space of possible rate values is the space of

possible signaling event orderings.

This idea is illustrated in Figure 3A. Protein A affects the activity

of protein D through two separate pathways. Assuming that A is

active to begin with, the relative speed of these two pathways

determines the final activity of D. If the pathway through C is

faster than the pathway BPD, then D will be active. However, if

the pathway speeds are reversed, then D will remain inactive. The

overall outcome of this network can be represented without any

use of numeric reaction rates by representing the reaction rates as

an ordering over all the edges in the network. We can extend this

idea to the SPN by observing that there exists a unique event for

each signaling edge in the signaling network.

This sampling strategy is the motivation for the dual-time

framework depicted in Figure 3B and implemented by the

signaling network event generator shown in Figure 6. Time blocks

are the larger time intervals during which every signaling event

occurs exactly once. Since every transition in the SPN is associated

with a unique event, each transition will fire exactly once in each

time block. Transition firings are the smaller time units that impose a

strict sequential order on the occurrence of signaling events. While

this strict sequentiality of firing models relative reaction rates, it

also discretizes the effect of signaling events. Though this is

consistent with the definition of transition firing in discrete time

Petri nets (only one transition is evaluated at a given point in time)

[44], in biological signaling networks there is no such serial

evaluation constraint. However, our validation with experimental

data suggests that this discretization approximation does not affect

the overall validity of the simulation results.

Defining the Initial State
As mentioned previously, the initial state of the SPN is the initial

marking, m0. As the SPN provides no explicit information on how

this marking should be built, we propose three ways to construct

the initial state: zero, basal, or experimentally derived. In a zero

initial state, the simulator initializes all proteins to have zero

tokens. The basal initial state is a random distribution of activation

levels intended to model the cell when no impulses due directly to

external stimuli are propagating through the signaling network.

Though a basal network is considered at rest, in general it will not

have a zero marking since signal flows are known to occur even in

unstimulated signaling networks through autocrine and paracrine

secretions by the cells. The experimentally derived initial state is

based on knowledge about the activity levels of various proteins

just prior to the addition of the external stimuli.

When accurate experimental data is available such as results from

microarrays or western blots, the experimentally derived initial state

may be the most accurate. A challenge in using experimental data,

however, is determining how best to assign numbers of tokens based

on the experimentally observed activity levels.

In the absence of reliable experimental data, the basal initial

state seems more accurate than the zero initial state. However, it

presents the challenge of properly selecting the basal activity-levels

to assign to each protein in the model network. In [18], a basal

initial state was constructed by activating a small number of

randomly selected proteins in the signaling network. However, the

work in [18] was done using a boolean model. Translating this

approach into a tokenized model creates the additional complexity

of determining how many tokens each basally active protein

should receive. The correct values are likely to depend on the

specific signaling network and experimental conditions.

We performed preliminary tests to compare the effect of using

different basal versus zero markings on the outcome of the

simulator. We found that the basal and zero states produced

indistinguishable predictions so long as less than 30% of the

proteins were activated and a small number of tokens (,5) were

used when constructing the basal marking. This is not as surprising

as it may seem at first. Inhibitory edges will quickly consume a

small number of tokens scattered throughout the network,

effectively returning much of the network to the zero state before

a stimulation event can propagate through.

Furthermore, while validating our method, we also compared

the predictions produced by SPNs based on a zero initial state and

experimentally derived initial state. These, too, did not produce

noticeably different final results for similar reasons as discussed

above. Details of these comparisons will be discussed further in the

Results and Discussion sections.

However, since all three initial state construction strategies yield

qualitatively identical predictions, using zero initial states has the

advantage of invoking the fewest unnecessary assumptions about

the network (as in the case of the basal initial state) and requiring

the least experimental data (as in the case of the experimentally

derived state). Nonetheless, in our implementation of the tool, we

allow for using any one of these three initial state construction

strategies.

Modeling Cell-Specific Signaling Networks
Whereas consensus signaling networks typically represent the

connectivity in normal cells, many experiments are conducted on

abnormal cells in which oncogenic mutations, gene knockouts, and

pharmacological inhibitors have altered the behavior of various

signaling nodes in the network. In an SPN, these alterations to the

signaling network can be modeled by adding/removing transitions

Figure 6. The Algorithm That Implements the Signaling
Network Event Generator. This routine generates the time block/
firing structure. Given a set of events, E, and the number of blocks for
which the SPN will be executed, n, GENERATESIGNALINGEVENTS generates n
blocks of events, each consisting of |E| events ordered randomly. In
each block, every event in E occurs exactly once.
doi:10.1371/journal.pcbi.1000005.g006
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(and associated input/output arcs) and explicitly setting the token

count for various proteins in the initial state.

The two network alterations which are commonly induced by

oncogenic mutations, gene knockouts, or pharmacological inhib-

itors are constitutively high or low protein activity-levels, meaning

that a protein is either unable to be inhibited or unable to be

activated. The simulator allows for proteins to be specified as

either fixed High or Low. Here we explain how these are modeled

by changes to the SPN.

If protein u is fixed high, then this protein cannot be inhibited.

Thus, all transitions that remove tokens from pu are removed from

the SPN. The fact that u is high, however, also suggests that it

maintains a higher activity level in general. Therefore, in the initial

state, m0(pu) = H, where H is a non-zero number of tokens. Since

all inhibiting transitions have been removed from the SPN,

throughout any execution, place pu will always have at least H

tokens.

In experiments, we have observed that the choice of the value of

H does not change the relative outcome of the simulations. While

H will affect the actual number of tokens present in a given place

as well as the number of time blocks required to observe certain

activity-level changes, the relative changes in activity-level

(number of tokens) among different proteins (places) does not

change. As a result, one is free to select any reasonable value of H

(for our experiments, we used H = 10) as long as this H is held

constant across all simulations whose results will be compared.

If protein u is fixed low, then this protein cannot be activated.

Thus, all transitions that add tokens to pu are removed from the

SPN. The fact that u is low, however, also suggests that it

maintains a constantly low activity level in general. Therefore, in

the initial state, m0(pu) = L, where L is a small number of tokens (in

our simulations we use L = 0). Since pu is only inhibited, we

observed that all constitutively low proteins quickly had their

marking reduced to zero.

Unlike the value of H, extra caution must be taken when

selecting values for representing L. A value of L that is too large

can destabilize the early propagation of signal through the

network. In our experiments, we obtained best results for values

of L very close to or equal to zero (L#2). Beyond this, the final

results obtained depended on other values in the network, the

strength of the signal, and the duration of the simulation.

Simulating a Signaling Network
Figure 7 provides more detailed versions of the simulation

algorithm outlined in Figure 2. Steps 1 and 2 of the SIMULATE

procedure constructs the initial marking and net topology to

incorporate perpetually high proteins, H, and perpetually low

proteins, L. In this paper, proteins that are assigned high activity-

levels receive an initial token count of 10 in order to model a

higher-than-average initial activity-level. As discussed earlier,

using other values of H scale the activity-levels of all the proteins

in the network, but will not qualitatively change their relative

activities.

The loop in Step 3 runs r individual simulation runs. Each run

receives a different event ordering, se, thereby implementing the

interaction rate sampling strategy. The time block/step structure is

contained within the ordering se (see Figure 6C). As a result, the

SPN execution step simulates the events by firing their associated

transition. Only those markings that correspond to time block

boundaries are sampled.

After SIMULATE finishes collecting the time block markings from

all the runs, Step 4 computes the average markings for each time

block and Step 5 returns these averages.

Simulating a Perturbation Experiment
We tested the accuracy and performance of our method by

simulating the effect of two different targeted manipulations to a

well-known signaling network. We compared these predictions to

experimental results produced by performing the actual manip-

ulations on two separate cancer cell lines.

The perturbations we considered in this study altered the

constitutive activity-level of various proteins in the network (as

opposed to affecting specific signaling interactions). Therefore, we

modeled the perturbations as changes in the high and low

proteins—Hc and Lc for the control (unperturbed) network and Hp

and Lp for the perturbed network.

A variant of the SIMULATE method was required to quantify how

a perturbation changed the protein token-counts for each time

block. Figure 8 shows the algorithm we used. In the procedure

DIFFERENTIALSIMULATE, the input S provides the consensus SPN.

Inputs Hc and Lc specify the control high and low proteins, the

inputs Hp and Lp specify the perturbed high and low proteins.

After Steps 1–5 construct two separate SPNs for the control and

perturbed conditions, the loop in Step 6 performs r independent

simulations over the control and perturbed models. Step 6d

computes the difference between the markings at the end of each

time block in the perturbed and control networks. The marking

difference d i
j~mp

j {mc
j yields the marking d i

j where di
j vð Þ~

m
p
j vð Þ{mc

j vð Þ for each vMP. Following the loop, the marking

differences are averaged to obtain the time series (D1,D2,…,DB)

where Db(v) is the average change in the token-count for protein v

at time block b.

For values of |Db|.0 for a given molecule v, we can conclude

that the perturbation caused a change in the activity-level of v at

time block b only if the difference observed is statistically

Figure 7. The Procedure for Simulating a Signaling Petri Net.
SIMULATE predicts the signal flow through the SPN S. The simulation is
run for B time blocks; the results of r runs are averaged to produce the
final result. Most of the work is done by the signaling Petri net
execution procedure detailed in the preceding sections. This execution
actually performs an individual run. This procedure takes the initial
marking, m0, and applies the sequence of transitions triggered by the
event sequence, se. This ordering, generated by the algorithm in
Figure 6, has the dual time structure in which each block of edges
contains every event in E exactly once. Each firing evaluates the effect
of one transition. The markings at the end of each time block are
extracted in Step 5.
doi:10.1371/journal.pcbi.1000005.g007
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significant. We use a t-test to determine whether this change is

statistically significant for protein v at time block b. Computing the

t-test for two distributions (control and perturbation) requires

knowledge of the mean (mc,b and mp,b) as well as the variance

s2
c and s2

p

� �
for both distributions. In order to obtain these

parameters for the control network, a large number, X, of

independent simulations is run. Simulation i provides a single

series of markings, mi
1,mi

2, . . . ,mi
B

� �
. The mean is then computed:

mc,b,v~

PX
i~1

mi
b vð Þ

X
:

The variance is computed similarly:

s2
c,b,v~

PX
i~1

mi
b vð Þ{mc,b,v

� �2

X{1
:

The parameters mp,b,v and s2
p,b,v for the perturbed network are

computed as described above by substituting the perturbed network

for the control network. Using these parameters, the t-value for

molecule v at time block b can be computed from the formula

t{value~
mc,b,v{mp,b,vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
c,b,v

X
z

s2
p,b,v

X

q :

The statistical significance of the difference can then be obtained by

comparing the t-value to the desired critical value.

Note that the DIFFERENTIALSIMULATE procedure and the

associated significance test can predict the effect not only of

perturbations, but also of any two different experimental (or

cellular) conditions imposed on the same signaling network. As

a result, in addition to perturbation experiments, our method

can also be used to study the effects of other phenomena that

induce changes in the propagation of signal through a signaling

network.

Cell-Specific Signaling Network Models
Figure 1 shows the signaling network we analyzed. We obtained

the core connectivity from a published literature survey on the

EGFR network [57]. We added to this several other well-

established interactions taken from literature [36–43]. The

response of this network to various perturbations was measured

and simulated in two separate breast cancer cell lines: MDA231

and BT549. The core signaling Petri net used, SEGFR, is captured

by the following signaling proteins and interactions: places (the set

P): vEGFR, vSRC, vRac, vMEKK4, vMEK4, vJNK, vMEKK6, vMEK6,

vSTAT, vGrb2, vShc, vSOS, vRB, vELK, vBAD, vNFKB, vRAS, vGAB1,

vPIP3, vPI3K, vPDK1, vPTEN, vc-Raf, vAKT,vLKB1, vMEK, vGSK3b,

vAMPK, vTSC2, vMAPK1,2, vRSK, vRheb, vmTOR-Raptor, v4EBP1,

vp70S6K, vp38, and vpS6.

Protein interaction network motifs (the combination of arcs and

transitions): vEGFRRvGrb2, vGrb2RvShc, vShcRvSOS, vSOSRvRAS,

vGrb2RvGAB1, vGAB1RvPI3K, vEGFRRvSRC, vSRCRvSTAT,

vPI3KRvPIP3, vPIP3RvPDK1, vRASRvc-Raf, vPDK1RvAKT, vRASR
vRac, vRacRvMEKK4, vMEKK4RvMEK4, vMEK4RvJNK, vJNKR
vSTAT, vRacRvMEKK6, vMEKK6RvMEK6, vMEK6Rvp38, vp38R
vSTAT, vPDK1Rvp70S6K, vPTENxvAKT, vAKTxvc-Raf, vAKTxvGSK3b,

vAKTxvTSC2, vAKTxvAMPK, vAKTxvBAD, vAKTRvNFKB, vAKTR
vp70S6K, vLKB1RvAMPK, vMEKRvMAPK1,2, vMAPK1,2RvRB,

vMAPK1,2RvELK, vMAPK1,2RvSTAT, vGSK3bRvTSC2, vAMPKR
vTSC2, vMAPK1,2xvEGFR, vMAPK1,2xvTSC2, vMAPK1,2Rvp70S6K,

vMAPK1,2RvRSK, vRSKxvTSC2, vTSC2xvRheb, vRhebRvmTOR-Raptor,

v
AKT

RvmTOR-Raptor, vmTOR-RaptorRv4EBP1, vmTOR-RaptorR
vp70S6K, vp70S6KxvEGFR, vSRCxvSRC, vRacxvRac, vMEKK4xvMEKK4,

vMEK4xvMEK4, vJNKxvJNK, vMEKK6xvMEKK6, vMEK6xvMEK6,

vSTATxvSTAT, vGrb2xvGrb2, vShcxvShc, vSOSxvSOS, vRASxvRAS,

vc-Rafxvc-Raf, vMEKxvMEK, vMAPK1,2xvMAPK1,2, vRBxvRB, vELKx

vELK, vRSKxvRSK, vGAB1xvGAB1, vPIP3xvPIP3, vp38xvp38, vPI3Kx

vPI3K, vPDK1xvPDK1, vAKTxvAKT, vBADxvBAD, vNFKBxvNFKB,

vAMPKxvAMPK, vmTOR-RaptorxvmTOR-Raptor, vp70S6Kxvp70S6K,

vpS6xvpS6, v4EBP1xv4EBP1.

Notice that the last several edges are self-inhibitory loops (e.g.,

vRasxvRas). These loops are used to model regulatory mechanisms

that are not present in the model network.

For molecules that do not have specific inhibitory edges

modeled in the network, we use the self-inhibitory loop to prevent

exponential increase in the token counts and to model inhibitory

mechanisms beyond the scope of the network. For example,

consider the molecule Ras in the network shown in Figure 1. In

the model, this protein is not inhibited. However, biologically we

know that Ras has intrinsic GTPase function which inactivate

itself. In order to model this, we introduce a self-inhibitory loop.

The differences between the two cell-specific networks are

captured by following activity assignments to various proteins in

the SPN. In the MDA231 cell line, HMB = {vRas, vEGF} and

LMB = Ø. In the BT549 cell line, HBT = {vEGF} and

LBT = {vPTEN}.

Of the two perturbations we considered, one significantly

knocked down the activity-level of TSC2 and the other knocked

down mTOR-Raptor. While the core SPN still modeled these

networks, separate perturbed activity-assignments were required for

each cell line-perturbation pairing: LMB-TSC2 = LMB<{vTSC2},

Figure 8. The Algorithm for Predicting the Effect on Signal
Propagation of a Targeted Manipulation. The algorithm for
predicting the effect on signal propagation of a targeted manipulation
on signaling network with connectivity G. The ‘c’ and ‘p’ superscripts
are used to denote parameters in the control and perturbed versions,
respectively, of the SPN.
doi:10.1371/journal.pcbi.1000005.g008
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LMB-mTOR = LMB<{vmTOR-Raptor}, LBT-TSC2 = LBT<{vTSC2} and

LBT-mTOR = LBT<{vmTOR-Raptor}.

Setup for Perturbation Experiments
Cell culture and stimulation. Human MDA-MB-231

(MDA231) and BT549 breast cancer cells were routinely

maintained in RPMI supplemented with 10% FBS. For signaling

experiments, logarithmically growing cells were serum-starved for

16 hours and then subjected to treatments by epidermal growth

factor (EGF) (20 ng/mL) (Cell Signaling Technology, Beverly,

Massachusetts) for 30 minutes. Controls were incubated for

corresponding times with DMSO. To knock down TSC2, cells

were treated with short interfering RNA (siRNA) (Dharmacon,

Lafayette, Colorado) for 72 hours prior to EGF stimulation. Control

cells were transfected with non-targeting (N/T) siRNA (Dharmacon,

Lafayette, Colorado) prior to EGF treatment.

Antibodies. The following antibodies were used for

immunoblotting: anti-phospho-p44/42 MAPK, anti-phospho-

GSK3b (S21/S9); anti-phospho-AKT(ser473); anti-phospho-

TSC2(T1462); anti-phospho-mTOR(S2448); anti-phospho-

P70S6K(T389) (Cell Signaling Technology, Boston,

Massachusetts); and anti-b-Actin (Sigma-Aldrich, St. Louis,

Missouri).

SDS-PAGE and immunoblotting. Cells were lysed by

incubation on ice for 15 minutes in a sample lysis buffer

(50 mM Hepes, 150 mM NaCl, 1 mM EGTA, 10 mM Sodium

Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10%

glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin,

bestatin, leupeptin, E-64, and pepstatin A). Cell lysates were

centrifuged at 15,000 g for 20 minutes at 4uC. The supernatant

was frozen and stored at 220uC. Protein concentrations were

determined using a protein-assay system (BCA, Bio-Rad,

Hercules, California), with BSA as a standard. For immuno-

blotting, proteins (25 mg) were separated by SDS-PAGE and

transferred to Hybond-C membrane (GE Healthcare, Piscataway,

New Jersey). Blots were blocked for 60 minutes and incubated

with primary antibodies overnight, followed by goat anti-mouse

IgG-HRP (1:30,000; Cell Signaling Technology, Boston,

Massachusetts) or goat anti-rabbit IgG-HRP (1:10,000; Cell

Signaling Technology) for 1 hour. Secondary antibodies were

detected by enhanced chemiluminescence (ECL) reagent (GE

Healthcare, Piscataway, New Jersey). All experiments were

repeated a minimum of three independent times.

Setup for perturbation simulations. To select the block

duration parameter, B, we compared the experimentally derived fold

change of AKT in the MDA231 cell line to the AKT fold changes

predicted for B = 10, 20, 50, 100, and 1000. We found B = 20 to be

the best fit and used this value for all simulations in this study.

We also experimented with input parameter r, the numbers of

individual simulation runs averaged per simulation. We tried a

range extending from r = 100 to r = 1000. We found that no

observable changes occurred in trends for r$400. Therefore,

r = 400 was used for all simulations in this study.

We considered both the zero and experimentally derived initial

states as the initial markings for the TSC inhibition simulations.

The experimental states for both cell lines were derived from

western blots produced from cells that were incubated in DMSO

and serum-starved for 16 hours. Unsampled molecules were

assigned a marking of zero. The number of tokens assigned to

each sampled molecule was directly proportional to the darkness

of the line on the western blot. This assignment was done by hand,

though devising automated and standardized methods for the

construction of experimentally derived initial states is an important

direction for future work. Since most of the molecules in the

network were not sampled, only mTOR-Raptor, TSC2, GSK3b,

p70S6K, AKT, and MAPK were given non-zero markings. The

initial markings used are shown in Table 1.

Since experimental results for the mTOR-Raptor inhibition

were obtained from literature, we did not have experimental

results for construction of experimentally derived initial states.

Therefore, we used the zero initial states for the mTOR-Raptor

inhibition simulations.

Results

In order to evaluate the accuracy of our simulation method, we

tested its predictions of the effect of targeted manipulations on two

cell-specific versions of the signaling network depicted in Figure 1.

In each cell line, a TSC2-specific siRNA was applied and the

concentration of several key proteins in the EGFR network were

sampled 30 minutes after stimulation with EGF. This was

repeated in the absence of the TSC2 siRNA in order to obtain

the concentration in the control network. We also collected a

corpus of literature detailing the response of signaling proteins

activity-levels to the inhibition of mTOR-Raptor using Rapamya-

cin [43,58]. Predictions were generated by our simulator for the

TSC2 and mTOR-Raptor perturbations in both cell lines.

Simulation
To simulate a perturbation, we used two networks both based

on the signaling network shown in Figure 1: the control network

for the cell line and the perturbed network for the cell line. The

control networks for the cell lines were different because it was

important to model the cell-specific mutations. In the case of the

BT549 cell line, there is a mutation that leads to the loss of PTEN,

which makes AKT always active. In the MDA231 cell line, there is

a mutation in Ras, which makes it always active. As shown in the

formulation of the model, these are modeled using fixed activity

assignments in the simulator.

The TSC2 (mTOR-Raptor) perturbed network for a cell line

was created by taking the control network and fixing the activity-

level of TSC2 (mTOR-Raptor) to zero for the duration of the

simulation, effectively simulating the pharmacological inhibition of

the protein. For each cell-line/perturbation pair, we ran the

simulator on the control and perturbed networks using the

DIFFERENTIALSIMULATE procedure in Figure 8 which computed the

change in token-counts induced by the perturbation for all

proteins in the model. These change plots are shown in Figure 9

for TSC2 and in Figure 10 for mTOR-Raptor. We ran the

simulations using both experimentally derived initial states as well

Table 1. Experimentally Derived Initial Markings Used in the
Simulations.

Molecule MB231 BT549

Control
TSC2
Inhibited Control

TSC2
Inhibited

mTOR-Raptor 0 1 5 5

TSC2 0 0 6 0

GSK3b 5 3 3 6

p70S6K 0 2 0 0

AKT 0 0 7 7

MAPK 2 6 1 2

doi:10.1371/journal.pcbi.1000005.t001
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as zero initial states. The initial state used did not change the

overall trends observed in the simulations.

Using the t-test described in the Methods section, we also

computed the statistical significance of the final time block (b = 20)

for each molecule considered. For each molecule considered, 400

runs, 20 time blocks, and 50 samples were used. With the

exception of GSK3b which did not show a significant response to

the perturbation, the changes of all other proteins sampled were

beyond the 0.05 significance level (see Table 2). The statistical

insignificance of the change in GSK3b is not surprising since, as

shown in Figure 1, GSK3b is solely activated by LKB, a molecule

fixed high in both cell lines. Thus, we should not expect either

perturbation to have a significant effect on the activity of GSK3b,

which is what the t-value indicates.

Experimental Results
After the TSC2 perturbation was applied to a cell line, the

protein concentrations were collected using western blots. Details

are given in the Materials and Methods section. The western blot

results are shown in Figure 9.

Discussion

As can be seen in Table 3, our method correctly predicted the

relative protein activity-level changes induced by the TSC2

perturbation in both cell lines, for most molecules sampled.

Notice that no change (–) was reported for the predicted response of

MAPK to the TSC2 perturbation despite the fact that a small

change did occur in its marking during the simulation (see Figure 9)

Figure 9. The Results of the TSC2 Perturbation Experiments and Simulations. In the western blots, columns (or lanes) are as follows: (1)
non-targeting (NT) control siRNA, (2) NT siRNA+EGF, (3) TSC2 siRNA, (4) TSC2 siRNA+EGF. The effect of the TSC2 siRNA on a given molecule can be
assessed by comparing column 4 against column 2. For each molecule in the western blot, there is a corresponding simulation curve showing the
predicted change in protein activity over time. For the purposes of this analysis, we compared the concentration change after 20 time steps (the left-
most data points in the plots) for each molecule. Each simulation point corresponds to the average of 400 measurements that were computed using
the procedure described in Figure 8. Experimentally derived initial states were used in the simulations. The results of both the experiments and
simulations are qualitatively summarized in Table 3.
doi:10.1371/journal.pcbi.1000005.g009
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and the t-value for the change is significant (see Table 2). At first,

interpreting this value as no change may seem misleading. However,

one of the significant challenges in experimental perturbation

experiments is separating true system responses from the

background noise created by experimental variables that cannot

be precisely controlled (among them cell population sizes,

variability in microarray antibody binding effectiveness, and

limited sensitivity of hardware and software used to quantify

experimental results). As a result, a common practice is to only

consider those substantial changes that are well beyond the

background noise level. Our interpretation of the small predicted

change in MAPK as no change reflects the fact that such small

changes would not be detectable in microarray or western blot

results. Thus, though such a small fluctuation might have occurred

in the real data, it would not have been detected by the biologists

and most likely would appear in the experimental data to have not

changed.

Similar reasoning guided our decision to characterize the

simulation (and experimental) results as either up (q), down (Q),

or no change (2) in general. Since the amount of protein

registered in a microarray or western blot is not always a reliable

indicator of the exact amount of protein (or protein form) being

measured, biologists are often reluctant to report degrees of

increases or decreases—preferring binary observations such as up

or down which are less subject to influence by extraneous

experimental conditions. It is true that our simulation method

produces precisely quantified increases or decreases which can be

taken to indicate degrees of change in response to perturbations.

However, as experimental techniques cannot reliably measure

degrees of increase or decrease, we judged the binary (up or down)

characterization to be a more reliable way of validating our

method. Certainly, our method provides additional information of

Figure 10. The Predicted Response of the Network to an mTOR-Raptor Perturbation. The predicted response of the network to a mTOR-
Raptor perturbation in the (A) MDA231 and (B) BT549 cell lines. Our method predicts that the amount of available AKT increases in response to the
perturbation, which is in agreement with results published in the literature [43,58]. Our method also predicts that the activity-level of p70S6K in the
MDA231 cell line decreases in response to the perturbation, which has been observed experimentally [59]. Each point corresponds to the average of
400 measurements that were computed using the procedure described in Figure 8.
doi:10.1371/journal.pcbi.1000005.g010

Table 2. The T-Values for the Molecules Sampled in the
Microarray.

Molecule t-Value in MDA231 t-Value in BT549

mTOR-Raptor 41.72 30.53

TSC2 21.65 8.28

GSK3b 0.42 0.10

p70S6K 14.22 5.83

AKT 6.60 9.55

MAPK 16.35 18.93

The critical value for an alpha value of 0.05 with 50 samples is 2.0086. Note that
the t-values for all molecules except for GSK3b are larger than this value,
confirming that these changes are statistically significantly.
doi:10.1371/journal.pcbi.1000005.t002

Table 3. Summary of the Effect of Perturbation Reported by
Experimental and Simulated Methods.

Molecule MB231 BT549

Experiment Simulation Experiment Simulation

mTOR-Raptor q q q or 2 q

TSC2 Q Q Q Q

GSK3b 2 2 2 2

p70S6K q q Q q

AKT Q or 2 Q Q Q

MAPK 2 2 2 2

The up arrow (q) indicates that the perturbation caused a rise in the level of
the phosphorylated protein; the straight line (2) indicates no change; and the
down arrow (Q) indicates that a decrease occurred. Values in the Experiment
column were estimated by comparing lanes 4 and 2 in Figure 9. We estimated
the Simulation column by determining whether the top quartile of the
distribution for the final time point was above, below, or at zero. In some cases
it is difficult to judge for certain whether the total quantity of the
phosphorylated protein changed or remained the same—both for the
experimental and computational cases. In these situations, we indicated the
uncertainty by listing the possible changes that the protein could have feasibly
undergone.
doi:10.1371/journal.pcbi.1000005.t003
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degrees of change and we consider studying the accuracy of these

degrees to be an important area for future work.

Our method also correctly predicted the activity-level change of

AKT in response to mTOR-Raptor inhibition as reported by a

number of studies [43,58]. Further, our method predicted that,

when mTOR-Raptor is inhibited, the level of p70S6K in the

MDA231 cell line decreased, which also had been observed

experimentally [59].

The only incorrect prediction made by our method was the

activity-level change of p70S6K in the BT549 cell line. However,

BT549 cells contain an RB mutation [49] which could alter

p70S6K phosphorylation [60]. It is a strength of our simulator that

the discrepancy between our method’s predictions and the

experimental results identified a section of the model in which

additional connectivity has been found which might account for

the difference observed.

The predictions made by our simulator would be exceedingly

difficult to derive by visual or manual inspection. Table 4 shows the

number of paths between several pairs of compounds within the

network. Where there is more than one path connecting two

molecules, feed forward and feed backward loops are present.

Attempting to determine, by hand, how these different loops will

interact with one another is, by itself, a difficult endeavor even when

not considering the additional task of deriving the rest of the network

dynamics simultaneously. For the larger networks that are now

becoming available, computational analysis becomes even more

crucial to obtaining insights into the dynamic behavior of the network.

Despite the complexity of the network dynamics, it was

straightforward to find and integrate the connectivity information

used to build it. Most of the information sources [36–43]

established the existence of various pathways and provided few or

no biochemical or kinetic details. As a result, the literature we used

would have provided little assistance is building a parameterized

Petri net or ODE model. Due to the proliferation of curated

signaling network repositories and searchable literature archives,

connectivity information is relatively abundant which makes the

ad hoc assembly of networks a relatively straightforward endeavor.

This further underscores the advantage of using our method over

ODEs or parameterized Petri nets to quickly model and

characterize some of the dynamics of a signaling network.

For simulations that will be compared to experimental results, the

time parameter must be selected carefully. The time parameter, B,

indicates how many time blocks our method will simulate. The time

block is an abstract unit of time. Therefore, before comparing

experimental results and predictions, it is necessary to determine how

many seconds, minutes, or hours correspond to a time block. This

can be done by comparing a prediction of the simulator with the

experimentally measured activity-level of one or two proteins at

several time points in order to determine what time blocks

correspond to the different sampled time points. In the present

study, we calibrated our time blocks only once for two cell lines and

six experimental conditions (two cell lines, with/without TSC2,

with/without mTOR-Raptor). To select the time parameter we used

the experimentally measured activity changes in two proteins at two

time points. In contrast to other predictive dynamic analysis tools

which require multiple time points and multiple protein samples in

order to calibrate simulation and model parameters, our method has

relatively low time and resource investment.

Besides the time parameter, the other component of our

simulations which involved experimentally obtained knowledge

was the initial states. The experimentally derived initial states

require that some experimental data be available providing

information on the initial concentrations of individual signaling

proteins in the network prior to stimulation. However, in the

network that we considered here, the overall behavior of the

network and of individual signaling proteins was resilient to

changes in the initial states used. Zero and experimentally derived

both produced the same overall change predictions. Thus, while

experimentally derived initial states may be important for the

simulation of some networks, it may well be the case that many

networks (such as the one we considered in this paper) can be

simulated without this knowledge—further reducing the experi-

mental work that must be done prior to simulation.

The fact that our simulator produced accurate predictions for a

variety of experimental conditions using the one core network

model and set of simulation parameters also distinguishes our

method from other predictive approaches. The only aspects of the

model that were modified during the simulations were activity-

levels reflecting the immediate effects of either the underlying

tumor mutations (Ras and PTEN) or the perturbations (mTOR-

Raptor and TSC2 targeted manipulation). In contrast, the

accuracy of ODEs and Petri nets predictions are known to be

sensitive to small changes to the model. For comparative studies

such as the one conducted in this paper, an ODE or

parameterized Petri net model might need to be re-constructed

with different parameters for each experimental condition of

interest. As a result, while it is possible to obtain our simulation

results using these models, it remains beyond the capabilities of

any existing ODE or parameterized Petri net system to provide

insights into the effects of experimental conditions on the dynamic

behavior of a signaling network with so little initial time and

resource investment.

Though our method’s predictions will not be as accurate as the

results returned by a correctly parameterized ODE, biologists

using our method can derive information about a network’s

dynamic behavior without having to conduct extensive experi-

mentation and computationally expensive parameter estimation.

This novel capability offers scientists the exciting prospect of being

able to test hypotheses regarding signal propagation in silico. As a

result, by using our method researchers can evaluate a wide array

of network responses in order to determine the most promising

experiments before even entering the laboratory.
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Table 4. Number of Paths Connecting Several Pairs of
Compounds in the EGFR Model Used in Our Simulations

Source Protein Destination Protein Number of Paths

EGFR TSC2 7

AKT mTOR-Raptor 6

MEK EGFR 4

AKT p70S6K 8

The multiple paths connecting pairs of proteins highlight the complex
interactions present within the network that give rise to its overall dynamic
behavior.
doi:10.1371/journal.pcbi.1000005.t004
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Network topology determines dynamics of the
mammalian MAPK1,2 signaling network: bifan motif
regulation of C-Raf and B-Raf isoforms by FGFR
and MC1R
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ABSTRACT Activation of the fibroblast growth factor
(FGFR) and melanocyte stimulating hormone (MC1R)
receptors stimulates B-Raf and C-Raf isoforms that
regulate the dynamics of MAPK1,2 signaling. Network
topology motifs in mammalian cells include feed-for-
ward and feedback loops and bifans where signals from
two upstream molecules integrate to modulate the
activity of two downstream molecules. We computation-
ally modeled and experimentally tested signal process-
ing in the FGFR/MC1R/B-Raf/C-Raf/MAPK1,2 net-
work in human melanoma cells; identifying 7 regulatory
loops and a bifan motif. Signaling from FGFR leads to
sustained activation of MAPK1,2, whereas signaling
from MC1R results in transient activation of MAPK1,2.
The dynamics of MAPK activation depends critically on
the expression level and connectivity to C-Raf, which is
critical for a sustained MAPK1,2 response. A partially
incoherent bifan motif with a feedback loop acts as a
logic gate to integrate signals and regulate duration of
activation of the MAPK signaling cascade. Further
reducing a 106-node ordinary differential equations
network encompassing the complete network to a
6-node network encompassing rate-limiting processes
sustains the feedback loops and the bifan, provid-
ing sufficient information to predict biological re-
sponses.—Muller, M., Obeyesekere, M., Mills, G. B.,
Ram., P. T. Network topology determines dynamics
of the mammalian MAPK1,2 signaling network: bifan
motif regulation of C-Raf and B-Raf isoforms by
FGFR and MC1R. FASEB J. 22, 000 – 000 (2008)

Key Words: signaling motifs � computational modeling � pro-
teomics � melanoma

B-Raf is mutationally activated in 60–80% of
malignant melanomas as well as a large number of
benign nevi, indicating a role in the initiation of
malignant melanoma. Melanoma is the most aggressive
form of skin cancer. Recently, protein kinase inhibitors
have demonstrated remarkable clinical benefit in dis-
eases that have been resistant to traditional chemother-
apy, including chronic myelogenous leukemia (CML),
gastrointestinal stromal tumors (GISTs), HER2/Neu-

amplified breast cancer, and renal cell carcinoma (1–
8). Each of these diseases is characterized by genetic
aberrations that activate protein signaling networks,
which appears to be critical to the efficacy of protein
kinase inhibitors. Activating mutations of B-Raf result
in constitutive activation (phosphorylation) of MAPK
(9, 10). This pathway is also activated by mutation of
N-Ras, which occurs in �15% of melanomas (11, 12).
Mutant N-Ras activates the RAS-RAF-MEK-MAPK as well
as the PI3K-AKT-mTOR pathways in vitro. Mutations of
B-Raf and N-Ras appear to be mutually exclusive in
melanoma tumors and cell lines (12–14).

The high prevalence of activating mutations of com-
ponents of the RAS-RAF-MEK-MAPK pathway suggests
that it may be an effective therapeutic target in mela-
noma. The first B-Raf inhibitor to be used in clinical
trials is sorafenib (Nexavar®), also known as BAY43–
9006 (15). Sorafenib is a small molecule inhibitor of
wild-type B-Raf, mutant (V600E) B-Raf, and a number
of tyrosine kinase receptors (16). A Phase II single-
agent study in patients with metastatic melanoma
yielded disappointing results (16). Among 20 patients,
only 1 partial response was observed, and 3 patients had
stable disease. The lack of a complete understanding of
the underlying homeostatic mechanisms regulating the
RAS/RAF/MEK/MAPK pathway and the effects of B-
Raf mutations on this pathway may contribute to the
failure of monotherapy targeting individual compo-
nents of the pathway. We thus sought to further define
the homeostatic mechanisms controlling information
transfer through the RAS/RAF/MEK/MAPK pathway
(17).

Analysis of mammalian signaling networks shows that
a large percentage of signaling subnetwork motifs are
feed-forward/feedback loops and bifans (18). A recent
analysis of network motifs of a 545 component 1259
interaction mammalian signaling network revealed 300
feed-forward loops and 1000 bifan subnetworks (18).
The role these network motifs play in regulating signal-

1 Correspondence: Department of Systems Biology, Unit
950, UT M.D. Anderson Cancer Center, 7435 Fannin St.,
Houston, TX 77054, USA. E-mail: pram@mdanderson.org

doi: 10.1096/fj.07-9100com

10892-6638/08/0022-0001 © FASEB

 The FASEB Journal article fj.07-9100com. Published online January 2, 2008.



ing is not entirely clear. These subnetwork motifs could
serve both to prolong signaling on initiation by a
stimuli and also to terminate the signal (18–20). Given
the high frequency of occurrence of bifan motifs in
signaling and transcriptional networks (18, 21), we
investigated whether coherent or incoherent bifan mo-
tifs regulate the mammalian MAPK1,2 network.

Signaling networks receive inputs from multiple up-
stream stimuli or receptor and must appropriately
process this information into a clear message that
results in the appropriate cellular outcomes. The
MAPK1,2 network can be activated by signals from
RTKs that activate Ras–C-Raf (22) and also by GPCR
signals that activate B-Raf in a cAMP-dependent man-
ner (23, 24) (see Supplemental Figs. S1 and S2).
Signals from the G�s–cAMP pathway also activate pro-
tein kinase A (PKA), which in turn phosphorylates
C-Raf at Ser-259 and causes C-Raf to bind 14–3-3
proteins rendering C-Raf inactive (25–28). Identified
feedback loops in this network include a positive feed-
back loop from MAPK1,2 involving PKC and potentially
C-Raf (20), a negative loop from MAPK1,2 to B-Raf
(29), a negative feedback loop from MAPK to C-Raf
(30), a positive feedback loop from MAPK to C-Raf
(31), and a feed-forward loop from PKC to adenylyl
cyclase (32) (See Supplemental Figs. S2A, B and S3A, B,
D and Fig. 2A). In summary, these interactions form a
partially incoherent bifan, where C-Raf receives a posi-
tive and a negative input from FGFR and MC1R,
respectively, while B-Raf receives positive inputs from
both receptors. Given this complexity in connectivity
within the GPCR-RTK-MAPK network, it is a priori
difficult to understand how signals are processed to
modulate the temporal duration of MAPK1,2 activity
and what molecules and motifs can regulate the re-
sponse. However, a computational model incorporat-
ing these concepts offers the potential to both charac-
terize the dynamics of signal transduction through a
network and define combinational therapies that could
improve patient outcome.

Sustained vs. transient activation of signaling mole-
cules and pathways is an important regulatory mecha-
nism within the cell. For example, sustained activation
of MAPK1,2 (90 min or more) has been shown to
increase gene expression and activation of c-Fos lead-
ing to cellular proliferation, whereas the transient
activation of MAPK1,2 (less than 30 min) does not
activate c-Fos (33, 34). Similar effects are seen in NFkB
signaling, where a transient or a sustained activation
results in distinct changes in gene expression (35).
Physiological responses such as differentiation and cell
division are often dependent on temporal duration of
activation of signaling molecules such as MAPK1,2 (36,
37). We have previously shown that the MAPK1,2
network can exists as a bistable system and can elicit
either a sustained or transient response (20).

In this study, we determined how bifan and loop
motifs regulate the system properties of the mamma-
lian MAPK1,2 network in human melanoma cells. To
address this problem, we used an integrated approach

of computational modeling and experimental analysis.
For the experimental analysis, we used SB2 human
melanoma cells. This model system and cell line were
chosen for several reasons. Melanocytes and melanoma
cell lines endogenously express both fibroblast growth
factor receptor (FGFR) (38) as well melanocortin 1
receptor (MC1R) (39), which are important in their
biology and the pathophysiology of melanoma. Fibro-
blast growth factor is an important mitogen for mela-
noma cells (40), and the melanocortin 1 receptor,
which is coupled to Gs, is important in normal biology
as well as in the pathophysiology of melanoma (41).
Single-nucleotide polymorphisms of the MC1R that
result in a loss-of-function variant of the receptor are a
risk factor for the development of melanoma (42). At
the signaling level, B-Raf mutations occur in �70% of
melanomas, and B-Raf is a target for therapy (10). The
cell line we have used in this study endogenously
expresses FGFR and MC1R, as well as wild-type B-Raf
and C-Raf, and contains the V90 MC1R loss-of-function
SNP. The computational model encompassed ordinary
differential equations (ODE) to simulate the MAPK1,2
signaling network.

MATERIALS AND METHODS

Computational modeling

Two computational models were developed: Model A, a
detailed 106 ODE system; and Model B, a reduced 6 ODE
system. A previously published MAPK1,2 network model (20)
and a published Gs-PKA module (43) were integrated to form
Model A. The same parameter values and rate constants were
used, except for FGF and FGFR, the values for which are in
Table S1. These two models were connected by the following
interactions: 1) cAMP binding and activation of cAMP-GEF;
2) cAMP-GEF activation of Ras; 3) Ras activation of B-Raf; 4)
B-Raf activation of MEK1; 5) PKA phosphorylation of Ser-259
of C-Raf; and 6) PP2A dephosphorylation of Ser-259 C-Raf.
The connection from cAMP-GEF to B-Raf is mediated by a
small G protein. The small G protein it is most commonly
reported as Rap in many cell types. However, in melanoma it
is not clear whether cAMP-GEF activates Rap or Ras. Regard-
ing melanoma cells, Busca et al. (24) and Dumaz et al. (9)
present data to suggest that Ras mediates the cAMP signal;
whereas Gao et al. (44) suggest that Rap mediates the cAMP
signal. Since the connection from cAMP-GEF to Rap/Ras is
not well defined in melanoma, we chose to use the cAMP-GEF
to Ras connection for the model. A coupled ordinary differ-
ential equation computational model of the network was
developed and solved in Genesis/Kinetikit (19). Parameter
variation analysis was done on the network through iterations
of modeling and experimental analysis. A parameter set was
chosen such that the model output closely matched the
experimental data. These parameter values were used for
subsequent simulations. The biochemical parameters and
concentrations that were used for the added components are
shown in Supplemental Table S1. The second model, Model
B, of the reduced network was built and solved using MatLab.
The parameters and constants are shown in Supplemental
Table S2.
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Cell culture and stimulation

Human SB2 melanoma cells were kindly provided by Dr.
Menashe Bar-Eli (M.D. Anderson Cancer Center, Houston,
TX, USA). SB2 melanoma cells endogenously express wild-
type B-Raf, C-Raf, FGFR, and the V90 MC1R SNP (unpub-
lished results, Drs. J. Ellerhorst and E. Grimm, Department of
Experimental Therapeutics, University of Texas M.D. Ander-
son Cancer Center, Houston, TX, USA). Cells were routinely
maintained in modified essential medium supplemented with
10% FBS. For signaling experiments, logarithmically growing
cells were starved in 1% FBS for 16 h and then subjected to
stimulations using basic fibroblast growth factor (FGF 20
ng/ml) (Cell Signaling Technology, Danvers, MA, USA)
and/or melanocyte stimulating hormone (MSH, 2 �M; Sigma-
Aldrich, St. Louis, MO, USA). For washout experiments, cells
were stimulated with fibroblast growth factor (FGF) and/or
MSH for 5 min, washed, and incubated at 37°C in 1%
medium for time periods indicated in figure legends. Where
specified, cells were pretreated with the PKA inhibitor H89
(20 �M) for 2 h prior to incubation with FGF and/or MSH.
Controls were incubated for corresponding times with di-
methyl sulfoxide. For some experiments, cells were treated
with short interfering RNA (siRNA) for 48 h prior to treat-
ment to knock down C-Raf (Cell Signaling Technology).

Antibodies

The following antibodies were used for immunoblotting and
reverse phase protein microarrays (RPPAs): antiphospho-
p44/42 MAPK, p42MAPK (Cell Signaling Technology); anti-
C-Raf (Upstate Biotechnology, Waltham, MA, USA); and
anti-�-Actin (Sigma-Aldrich).

SDS-PAGE and immunoblotting

Cells were lysed by incubation on ice for 15 min in a sample
lysis buffer (50 mM HEPES; 150 mM NaCl; 1 mM EGTA; 10
mM sodium pyrophosphate, pH 7.4; 100 nM NaF; 1.5 mM
MgCl2; 10% glycerol; and 1% Triton X-100 plus protease
inhibitors aprotinin, bestatin, leupeptin, E-64, and pepstatin
A). Cell lysates were centrifuged at 15,000 g for 20 min at 4°C.
The supernatant was frozen and stored at �20°C. Protein
concentrations were determined using a protein-assay system
(BCA, Bio-Rad, Hercules, CA, USA), with BSA as a standard.
For immunoblotting, proteins (25 �g) were separated by
SDS-PAGE and transferred to Hybond-C membrane (GE
Healthcare, Piscataway, NJ, USA). Blots were blocked for 60
min and incubated with primary antibodies overnight, fol-
lowed by goat anti-mouse IgG-HRP (1:30,000; Cell Signaling
Technology) or goat anti-rabbit IgG-HRP (1:10,000; Cell
Signaling Technology) for 1 h. Secondary antibodies were
detected by enhanced chemiluminescence (ECL) reagent
(GE Healthcare). All experiments were repeated a minimum
of three independent times.

RPPA

Lysates were prepared as for Western blotting. Cell lysates (1
�g/�l) were boiled in 1% SDS and hybridized under strin-
gent conditions mimicking the conditions used in Western
blotting. Using a GeneTac G3 DNA arrayer (Genomic Solu-
tions, Ann Arbor, MI, USA), seven two-fold serial dilutions of
cell lysates are arrayed on multiple nitrocellulose-coated glass
slides (FAST Slides, Whatman Schleicher & Schuell, Keene,
NH, USA). RPPA slides were produced in batches of 20.
Printed slides were stored in desiccant at �20°C. Antibodies
were screened for specificity by Western blotting with 25 �g of

lysate protein per lane. An antibody was accepted only if it
produced a single predominant band at the expected molec-
ular weight and where proteins behaved similarly on Western
blotting and arrays following manipulation of signaling path-
ways or across multiple cell lines with a wide dynamic range.
Each array was incubated with specific primary antibody,
which was detected by using the catalyzed signal amplification
(CSA) system (DAKO, Carpinteria, CA, USA). Briefly, each
slide was washed in a mild stripping solution of Re-Blot Plus
(Chemicon International, Temecula, CA, USA) then blocked
with I-block (Tropix, Bedford, MA, USA) for at 30 min.
Following the DAKO universal staining system, slides were
then incubated with hydrogen peroxide, followed by avidin
for 5 min, and biotin for 5 min. Slides were incubated with
primary and secondary antibodies then incubated with
streptavidin-peroxidase for 15 min, biotinyl tyramide (for
amplification) for 15 min, and 3,3-diaminobenzidine tetrahy-
drochloride chromogen for 5 min. Between steps, the slide
was washed with TBS-T buffer. Loading is determined by
comparing phosphorylated and nonphosphorylated antibod-
ies. Multiple controls are placed on each slide to facilitate
quantification and validation of the assay. Spot intensity was
measured using Image J (http://rsb.info.nih.gov/ij/l). Pro-
tein phosphorylation levels are expressed as a ratio to equiv-
alent total proteins. Fold increases in spot intensities were
calculated against nonstimulated control samples.

RESULTS

MSH transiently activates MAPK1,2

A detailed 106 ODE model of the MAPK1,2 network
receiving inputs from FGF and MSH through the FGFR
and MC1R was constructed (Model A). Model A in-
cludes two previously published subnetworks, the RTK-
MAPK1,2 (20) and the Gs-PKA (43) subnetworks con-
nected through cAMP-GEF activation of Ras-B-Raf and
PKA inhibition of C-Raf. The table of molecules, initial
concentrations, interactions, and constants are shown
in Supplemental Table S1. The network includes a
putative bifan, two positive feedback loops, three neg-
ative feedback loops, and two feed-forward loops based
on published literature (18, 21, 45). We had previously
shown that activation with platelet-derived growth fac-
tor (PDGF) leads to a sustained activation of MAPK1,2
(20). Initially, investigations were performed to deter-
mine the duration of MAPK1,2 activity in response to a
stimulus received through activation of a GPCR
(MC1R). Computational modeling of the MAPK1,2
network with Model A, predicted that a 5-min stimulus
of 0.02 �M MSH would lead to only a transient increase
in MAPK1,2 phosphorylation with a return to near
basal levels 10 min after stimulus (Fig. 1A) if a positive
feedback loop exists from MAPK to C-Raf. The MSH
stimulus was predicted to result in a maximal activation
of 0.16 �M of active MAPK1,2, 5 min after stimulus. We
have operationally defined a sustained activation as
being at least 6 times longer than the stimuli. In our
computational and experimental studies, the length of
stimuli was 5 min and simulations were made up to 60
min after stimuli. However, computational modeling of
a positive feedback loop to both C-Raf and B-Raf from
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MAPK1,2 shows a biphasic activation of MAPK1,2 in
response to MSH (Supplemental Fig. S1C). Given these
two different potential outputs from Model A, we
experimentally determined the MAPK1,2 response to
MSH stimulation in SB2 melanoma cells. SB2 mela-
noma cells were serum-starved for 16 h and stimulated
with 2 �M MSH for 5 min. The cells were washed with
serum-free medium and incubated for various lengths
of time. The resulting phosphorylation of MAPK1,2 was
determined by RPPA analysis. Experimental data show
that MSH stimulation results in peak activity of phos-
phorylated MAPK1,2, 5 min after stimulus with a return
to basal levels 10 min after stimulus (Fig. 1B). Similar
results were observed in MeWo human melanoma cells
(data not shown). The same sets of lysates were probed
for phospho-MAPK1,2 and total MAPK on a Western
blot confirming that MAPK1,2 phosphorylation is only
transiently increased in response to MSH (Supplemen-
tal Fig. S3A). Therefore, based on the experimental
results we eliminated the positive feedback from
MAPK1,2 to B-Raf from the model and operated with a
single positive feedback loop to C-Raf. The iterative use
of computational simulation and experimental data is
thus used to test and constrain the model.

FGF leads to a sustained activation of MAPK1,2

We have previously shown that stimulation by PDGF
leads to a sustained activation of MAPK1,2 in mouse
fibroblast cells (20). We wanted to determine whether
other growth factors that activate receptor tyrosine
kinases, such as bFGF, can also elicit a sustained activa-
tion of MAPK1,2 in melanoma cells. Computational
modeling of the network using the revised Model A,

with a positive feedback from MAPK1,2 to C-Raf, sug-
gested that a brief 5-min pulse of FGF would lead to a
sustained increase in phosphorylated MAPK1,2 (Fig.
1C) with a maximal increase of activated MAPK1,2 of
0.17 �M. Additional reported pathway connection
within the network include a negative feedback from
MAPK1,2 to PKC (46). We modeled these interactions
individually and simulated the MAPK1,2 response with
these different connections. The results from these
simulations show that including a negative feedback
from MAPK to PKC results in a more rapid reduction in
MAPK1,2 activity as compared to the simulations with
only a positive feedback loop (Supplemental Fig. S2C).
Interestingly, adding a feed-forward loop from PKC to
AC (Supplemental Fig. S2D) changed the predicted
MAPK1,2 activation to a biphasic response (Supple-
mental Fig. S2E). Given these different computational
predictions, we determined the effects of bFGF on SB2
melanoma cells. Cells were serum-starved and stimu-
lated with bFGF (20 ng/ml) for 5 min. The FGF was
washed out, and cells were incubated for different
lengths of time. The RPPA data show that a brief
stimulus of FGF leads to a sustained increase in
MAPK1,2 phosphorylation (Fig. 1D) with a maximal
increase in phosphorylated MAPK1,2, 10 min after
stimulus. Similar results were obtained using Western
blot analysis (Supplemental Fig. S3B). Constraining the
model based on the observed biological data, we elim-
inated the feed-forward loop from PKC to AC (Supple-
mental Fig. S2D), as well as the negative feedback loop
from MAPK1,2 to C-Raf (Supplemental Fig. S2B). The
resulting Model A used for further work contains a
positive feedback loop from MAPK1,2 to C-Raf (Fig.
2A).

Figure 1. A) MSH transiently activates MAPK1,2. Computational modeling data show
a transient increase in MAPK1,2 after a 5 min pulse of MSH. The bar at the x-axis
denotes length of stimulus. B) Experimental data from RPPA slides show phosphor-
ylation of MAPK1,2 in SB2 melanoma cell lysates following stimulation with MSH (2
�M) for 5 min. RPPA spots were scanned, and band intensities were quantified and
graphed as fold increases in band intensity as compared to nonstimulated cells after
normalizing for ERK2. C) FGF stimulation leads to a sustained activation of MAPK.
Computational modeling data show a sustained increase in MAPK1,2 after a 5-min
pulse of FGF. The bar at the x-axis denotes length of stimulus. D) Experimental data
from RPPA slides show phosphorylation of MAPK1,2 in SB2 melanoma cell lysates
following stimulation with FGF (20 ng/ml) for 5 min. RPPA spots were scanned, and
band intensities were quantified and graphed as fold increases in band intensity as
compared to nonstimulated cells after normalizing for MAPK.
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The MC1R, FGFR, B-Raf, C-Raf bifan network

Based on the data from Fig. 1, the detailed network we
developed is shown in Fig. 2A. This final network Model
A (Fig. 2A) was used for the remainder of the work in
this paper. The various interactions within the
MAPK1,2 network predicts that signaling from MC1R
and FGFR to B-Raf and C-Raf forms a partially incoher-
ent bifan motif. This bifan motif is described as partially
incoherent since B-Raf has coherent inputs (both pos-
itive from MC1R and FGFR), while C-Raf is incoherent
(positive from FGFR and negative from MC1R). The
bifan drives a positive feedback loop from MAPK,1,2 to
C-Raf, this network structure is shown in Fig. 2B.

Reduction of network and computing the signal
processing based on network structure

Based on connectivity to B-Raf and C-Raf we wanted to
determine whether a reduced network could be devel-
oped into a predictive computational model. This
reduction is a very important issue in the development
of large quantitative predictive models of signaling
networks. Our detailed ODE model already contains
106 equations, and adding on any other signaling
pathways would very rapidly increase the model to
several hundred ODEs. Computing hundreds of ODE’s
increases the likelihood of errors and, with the differ-
ence in time scales, can lead to stiff systems. We thus
determine whether reducing the model to include only
nodes that integrate signals would decrease the number
of equations required to solve, while still maintaining
the ability to predict experimental outcomes. Preserv-
ing the signatures of the network, feedbacks, and
bifans, the network was reduced to the minimum
informative network structure. A reduced network
model was developed, Model B (Supplemental Fig. S5),
and tuned using the experimental data from Fig. 1B, D.
The simulation from the reduced model predicts a
transient activation of MAPK1, 2 on MSH stimulus (Fig.

2C). Model B was constrained using the experimental
data with resulting simulations predicting that activa-
tion of FGFR results in sustained activation of MAPK1,2
(Fig. 2D). Having developed this reduced model and
tuning it using the experimental data, we used Model B
to predict the behavior of the system and compared it
to predictions from the large, detailed Model A in the
ensuing sets of studies.

C-Raf is essential for a sustained but not transient
activation of MAPK1,2

Regulation of the temporal characteristics of the
MAPK1,2 network by the two RAF isoforms is not
known. Reports suggest that C-Raf is needed for activa-
tion of MAPK1,2 by B-Raf stimulatory pathways (47,
48). We wanted to investigate how changing the relative
protein levels of C-Raf and B-Raf would alter the
MAPK1,2 response. Parameter variation of the concen-
trations of B-Raf and C-Raf was performed with the
resultant computational data suggesting that the
MAPK1,2 response is acutely sensitive to the relative
concentrations of the two Raf isoforms (Fig. 3A). Sen-
sitivity analysis suggests that the relative amount of
C-Raf would be critical for eliciting a sustained
MAPK1,2 response. If the initial C-Raf protein concen-
tration is equal to or higher than the B-Raf protein
concentration, the MAPK1,2 network is predicted to
respond to stimulus resulting in a sustained activation
of MAPK1,2 (Fig. 3A). We experimentally determined
the relative expression of C-Raf and B-Raf in SB2
melanoma cells. Immunoprecipitation of C- and B-Raf
followed by Coomassie blue staining of the immuno-
precipitate showed that the expression levels of C-Raf
and B-Raf are almost equal (Fig. 3B). Closer examina-
tion of the MAPK1,2 response suggests that a steep
C-Raf concentration dependency would be required to
elicit a sustained MAPK1,2 response (Fig. 3C). Based on
Model B, we simulated the FGF activation of MAPK

Figure 2. A) Detailed network model of the FGFR-MC1R-B-Raf-C-Raf-MAPK1,2 network based on the experimental data from
Fig. 1. B) Connection diagram shows the reduced network structure of the FGFR-MC1R-B-Raf-C-Raf-MAPK1,2 network dynamics
of MAPK1,2 activity. C) The reduced motif model was trained using the experimental data from MSH stimulation. The model
shows only a transient increase in active MAPK on a 5-min MSH pulse. D) The same model was also trained using the FGF
experimental data. The model shows a sustained activation of MAPK on FGF stimulation.
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under conditions where the feedback to C-Raf was
inhibited. The modeling simulation predicted only a
transient activation of MAPK when feedback to C-Raf is
blocked (Fig. 3D). These computational modeling re-
sults predict that if C-Raf levels are decreased, FGF will
no longer elicit a sustained MAPK1,2 response (Fig. 3D;
dotted line). To experimentally test this hypothesis,
cells were transfected with C-Raf specific siRNA and the
levels of C-Raf were measured 72 h after transfection.
The data show that C-Raf was knocked down by 60%
using C-Raf siRNA with little effect on B-RAF (Supple-
mental Fig. S3D). We then determined the MAPK1,2
response to stimulation by FGF under conditions of low
C-Raf. Cells transfected with either C-Raf or nonspecific
siRNA were serum-starved and stimulated with FGF for
5 min and the phosphorylation of MAPK1,2 measured
over time. The data show that if C-Raf is knocked down,
FGF can no longer elicit a sustained MAPK1,2 response,
while a transient response is still present (Fig. 3E).
These data suggest that the expression level of C-Raf is
critical for a sustained MAPK1,2 response.

The bifan motif can regulate the duration of
MAPK1,2 activation

Having observed the differential regulation of the
dynamics of MAPK1,2 activity by C-Raf, we wanted to
determine whether the duration of MAPK1,2 activa-
tion can be modulated in a completely endogenous
system. Activation of the Gs-PKA pathway phosphor-
ylates C-Raf and inhibits C-Raf activity (28). There-
fore, we wanted to determine whether activation of
the Gs-PKA pathway would gate the FGF-induced
sustained activation of MAPK1,2 by inhibiting C-Raf.
Computational modeling data from Model A (Fig.
2A) predicted that a prepulse of MSH would inhibit
FGF-induced sustained phosphorylation of MAPK1,2
(Fig. 4A). While a pulse of FGF alone activated
MAPK1,2 for longer than 70 min (Fig. 1C), a pre-
pulse of MSH followed by a pulse of FGF phosphor-
ylated MAPK1,2 for less than 30 min (Fig. 4A). Model
B also predicted a transient activation of MAPK on a
prepulse of MSH followed by FGF (Fig. 4B). SB2

Figure 3. A) C-Raf is essential for sustained MAPK1,2 activation. Computational modeling of FGF activation of MAPK1,2 activity
30 min after stimulus with different ratios of C-Raf to B-Raf. B) Experimental data show immunoprecipitated B-Raf and C-Raf
from SB2 melanoma cells resolved on SDS-PAGE and stained with Coomassie blue. Band intensities were quantified and shown
on the bar graph as relative expression of B-Raf and C-Raf after normalizing against the IgG heavy chain and for the change in
B-Raf and C-Raf after immunoprecipitation, as compared to the levels in the pre-IP lysate. C) Sensitivity analysis of the sustained
vs. transient response of MAPK1,2 activity to FGF as a function of varying the total amount of C-Raf suggests that the sustained
MAPK1,2 response is dependent on C-Raf levels. D) The reduced motif model shows inhibition of the activation of C-Raf by
MAPK (dotted line) when the biological system is stimulated by FGF for 5 min. E) Experimental data from SB2 cells transfected
with either C-Raf specific siRNA or nonspecific siRNA. Seventy-two hours after transfection, cells were serum-starved and
stimulated with FGF for 5 min, washed out, and incubated for the times shown. Cell lysates were probed for phospho-MAPK1,2,
C-Raf, and �-Actin as shown. Graph shows changes in phopsho-MAPK1,2 after normalization for �-Actin.
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melanoma cells were serum-starved and stimulated
with 2 �M MSH for 5 min, followed by 20 ng/ml FGF
for 5 min. Ligands were then washed out, and cells
were incubated in serum-free media for different
lengths of time. The data show that a prepulse of
MSH does indeed inhibit the FGF-induced sustained
activation of MAPK1,2 (Fig. 4C). Similar data were
obtained from Western blot analysis (Supplemental
Fig. S3C).

PKA is a key regulator determining the state of the
MAPK1,2 network

The data thus far show that the levels and activation of
specific Raf isoforms determine the temporal duration
of activation of the MAPK1,2 network, whereby either
knocking down C-Raf or inhibiting its function by
activating PKA inhibits a sustained MAPK1,2 response.
We further investigated the role of PKA in the MSH
gating of the FGF-mediated MAPK1,2 network. The
MSH regulation of MAPK1,2 is dependent on cAMP
and PKA, where cAMP has been reported to activate
B-Raf (24, 49) but PKA inhibits C-Raf (50). This diver-
gence of the signal occurs on two different hierarchical
steps, where cAMP is at a level higher than PKA.
Therefore, it should be possible to inhibit PKA activity
using a pharmacological inhibitor (H89), while at the
same time allowing cAMP activation of B-Raf. Under
this condition, we determined whether inhibiting PKA,
and therefore not inhibiting C-Raf, would alter the

MSH gating of MAPK1,2. SB2 melanoma cells were
serum-starved, and PKA activity was blocked with the
incubation of H89. Cells were stimulated with MSH for
5 min followed by FGF for 5 min, and the activity of
MAPK1,2 was measured. The data show that if PKA is
inhibited, MSH cannot gate the FGF activation of
MAPK1,2 (Fig. 4D).

Inhibiting the negative input into the bifan switches
MAPK1,2 activation from transient to sustained

Computational modeling using Model A (Fig. 2A), of
the MSH activation of MAPK1,2 under conditions
where PKA is inhibited predicted that MSH stimulation
would lead to a sustained activation of MAPK1,2 when
PKA activity is blocked (Fig. 5A). SB2 melanoma cells
were serum-starved and incubated with 20 �M H89 for
2 h to inhibit PKA activity. The cells were then stimu-
lated with MSH for 5 min, and MAPK1,2 activity was
measured over time. The data show that inhibiting PKA
with H89 changes the MSH activation of MAPK1,2 from
a transient response (Fig. 1B) to a sustained activation
of MAPK1,2 in melanoma cells (Fig. 5B).

DISCUSSION

Signaling networks are complex with numerous subnet-
work motifs that can dramatically alter the activation of
important regulatory molecules. We constructed a

Figure 4. A) MSH gates the FGF activation of MAPK1,2. Computational modeling
data show a transient increase in MAPK1,2 after a 5-min pulse of MSH followed
by a 5-min pulse of FGF. B) The reduced motif model shows only a transient
increase in MAPK1,2 activity following a stimulus of MSH at 0–5 min and then a
stimulus of FGF at 5–10 min. C) Experimental data from RPPA slides show
phosphorylation of MAPK1,2 in SB2 melanoma cell lysates following stimulation
with MSH (2 �M) for 5 min, followed by FGF (20 ng/ml) for 5 min. RPPA spots
were scanned, band intensities quantified and shown on graph as fold increase in
band intensities as compared to nonstimulated cells after normalizing for ERK2.
D) SB2 cells were serum starved and treated with either 20 mM H89 or vehicle for
2 h to block PKA activity. Cells were then stimulated with MSH for 5 min followed
by FGF for 5 min. The ligands were washed out, and the cells were incubated in
1% medium for times indicated. Lysates were probed for phospho-MAPK1,2 and
�-Actin. Graph shows fold change in phospho-MAPK1,2 after normalization for
�-Actin.
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MAPK1,2 network in silico based on our previous studies
and on the literature and experimentally tested it to
understand the design principles of this signaling mod-
ule. The model was constrained based on experimental
data to result in Model A (Fig. 2A). From these studies
we show that the temporal duration of MAPK1,2 is
distinct, depending on the activation signal. MC1R
stimulation by MSH leads to only a transient activation
of MAPK1,2. However, activation of FGFR leads to a
sustained activation of MAPK1,2. These two incoming
signals can interact such that the MC1R signal gates the
FGFR signal to change it from a sustained to a transient
activation of MAPK1,2 when the signals are processed
through the partially incoherent bifan motif. The FGFR
signal is coherent within the bifan to activate both

C-Raf and B-Raf. C-Raf then couples to a positive
feedback loop from C-Raf to MAPK1,2 back to C-Raf,
resulting in a sustained activation of MAPK1,2. How-
ever, the MC1R signal is incoherent within the bifan
where it activates B-Raf but inhibits C-Raf. This condi-
tion results in an inhibition of the C-Raf coupled
feedback loop to and from MAPK1,2. The difference
we observe in the sustained vs. transient activation of
MAPK1,2 is explained by this difference in the connec-
tion within the bifan. While it is known that both B-Raf
and C-Raf can activate MAPK1,2 (12, 13), here we show
that the two isoforms have distinct roles in regulating
the systems response of MAPK1,2. The system’s re-
sponse of MAPK1,2 activation is dependent on the
nature of connectivity of the two receptors to B-Raf and
C-Raf, which form a partially incoherent bifan. The
incoherent bifan is the locus of signal integration from
RTK and GPCR to MAPK1,2 with C-Raf acting as a logic
gate. Computational modeling of the network of func-
tional connections predicted the behavior of the sys-
tem.

The bifan network controls the state of a positive
feedback loop downstream from C-Raf to regulate the
dynamics of MAPK1,2 activation. We have previously
described the bistable properties of the MAPK1,2 net-
work, which is dependent on a positive feedback loop
from MAPK1,2 to C-Raf (20). Here we show that
altering the connectivity to the bifan motif changes the
state of MAPK1,2 from a transient to a sustained
response. Removing the inhibitory or incoherent con-
nectivity by inhibiting PKA switches the MC1R medi-
ated transient activation of MAPK1,2 to a sustained
response. Activation of PKA by GPCR’s serves to limit
the duration of MAPK1,2 activity, and ligands that
activate Gs receptors can balance growth factor activa-
tion of MAPK1,2 (18). The FGFR signal leads to a
sustained activation of MAPK1,2. However if C-Raf
levels are knocked down or if C-Raf activity is inhibited,
FGFR only elicits a transient activation of MAPK1,2.
While FGFR can still transiently activate MAPK1,2 when
C-Raf is knocked down, the sustained activation of
MAPK1,2 is dependent on C-Raf. Our studies presented
here show that sustained vs. transient activation of
MAPK1,2 can be regulated by a feedback loop to C-Raf,
which drives the systems response. PC12 rat pheochro-
mocytoma cells also exhibit a temporal difference in
MAPK phosphorylation in response to either EGF or
NGF. Work by Santos et al. (51) using PC12 cells shows
that a positive feedback loop from MAPK to C-Raf
mediates sustained MAPK activity in response to NGF,
while a negative feedback loop from MAPK to C-Raf
leads to a transient activation of MAPK in response to
EGF. Work by Sasagawa et al. (52), however, suggests
that the differential regulation of either Ras or Rap1 by
modulation of GTPase activating proteins (Ras-GAP or
Rap-GAP) can lead to sustained vs. transient activation
of MAPK in response to either EGF or NGF in PC12
cells. Here we show that a positive feedback to C-Raf
and differential regulation of C-Raf vs. B-Raf in re-
sponse to FGF or MSH can lead to transient vs. sus-

Figure 5. A) Computational modeling of the MSH activation
of MAPK1,2 under control conditions (solid line) or with
PKA activity inhibited (dashed line). B) SB2 cells were
serum-starved and treated with either 20 mM H89 or vehicle
for 2 h to block PKA activity. Cells were then stimulated with
MSH for 5 min and washed out, and cells were incubated in
serum-free medium for times indicated. Lysates were probed
for phospho-MAPK1,2 and �-Actin. The graph shows fold
change in phospho-MAPK1,2 after normalization for �-Actin.
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tained activation of MAPK in human melanoma cells.
The two isoforms of Raf can activate MAPK1,2 with
distinct temporal patterns of activity, suggesting that
inhibiting C-Raf rather than B-Raf may have a greater
effect on inhibiting MAPK1,2 activity. A previous mod-
eling study of a linear pathway from B-Raf and C-Raf to
MAPK1,2, which lacked the physiologically relevant
feedback loops, suggested that a high concentration of
B-Raf can lead to a sustained activation of MAPK1,2
(53) based on the parameters used in the model. We
find that the concentration and activity of C-Raf is more
important in maintaining the sustained response due to
the feedback connectivity to C-Raf. Note that the im-
munoblot showed a darker band for B-Raf than C-Raf,
but in fact when we immunodepleted the two Raf
isoforms from aliquots of the same lysate and deter-
mined Raf levels by Coomassie blue staining, we ob-
served that SB2 cells express more C-Raf than B-Raf.
The role of C-Raf in maintaining the sustained MAPK
activity may also explain why no C-Raf mutations have
been found in melanoma. While B-Raf mutations are
found in 70% of melanoma, B-Raf mutant expression
by itself is not sufficient to drive transformation of cells
but requires the addition of FGF (54). While both B-Raf
and C-Raf can activate MAPK1,2 (12, 13), our studies
here show for the first time that the two isoforms have
distinct systems properties in differentially regulating
the temporal duration of MAPK1,2 activation based on
feedback loops and signaling motifs within the
MAPK1,2 subnetwork. Activating mutations of B-Raf are
highly prevalent in melanoma while activating muta-
tions in C-Raf have not been reported. A possible
reason for this is that while the B-Raf mutation increase
MAPK1,2 by constant activation, the increase in
MAPK1,2 phosphorylation is only �2 fold (9), possibly
keeping the cells in an increased proliferative state and
thus increasing the chances of additional mutations.
Note that B-Raf mutations are found in all stages,
including preneoplastic nevi and melanocytic lesions,
suggesting that B-Raf mutations may be an early event
in the development of melanoma. Activating mutations
of C-Raf have not been reported; one possible mecha-
nistic reason could be that activating mutations of C-Raf
may result in cell death by driving MAPK1,2 and the
positive feedback loop.

Developing large quantitative models of signaling net-
works is very important as we try to predict how signals are
processed in response to activators and change in re-
sponse to targeted manipulations. Building detailed ODE
models of large networks is impractical due to the scale of
the model. Alternative methods such as Boolean models
have been suggested, but due to feedback loops the
Boolean models are frequently unstable and lead to
oscillatory behavior. Here we demonstrate that reduction
of the network based on the biology of the connectivity is
a very useful method to reduce the network while main-
taining all subtle complexities resulting in a model able to
robustly predict the effects of network perturbations.
Development of such systems biology methods is highly
dependent on very close co-operation between mathema-

ticians and biologists and experimental validation and
constraining of the model is vital. Indeed, as indicated
herein a number of different models were predicted from
the literature. We tested these directly resulting in the
evolution of Model A (Supplemental Fig. S1A) to the
refined version of Model A depicted in Fig. 2A, which is
considerably different in topology and in predictions.

Determining the systems function of signaling net-
works using an integrated approach of computational
modeling, experimental biology, and targeted manipu-
lations is very useful in identifying components and
motifs that can regulate network function. These regu-
latory molecules could then serve as targets for thera-
peutic purposes. While a molecule might be an attrac-
tive target in the context of a linear pathway when one
considers the feedback loops and interactions at a
systems level, the same molecule may no longer provide
to be a good target. Indeed, experimental and patient
data for example suggest that a feedback loop in the
phosphatidylinositol-3-kinase pathway limits the effi-
cacy of targeting mTOR (55). Thus, understanding the
systems properties and design principles of signaling
networks and developing models of the relevant inter-
actions validated with experimental testing could aid in
development and validation of targeted therapeutics.

Medium-to-high throughput biological methods
such as RPPA have allowed us to measure changes in
several signaling molecules in parallel from the same
set of cell lysates. Using these data, we can begin to
construct larger networks and determine how signals
from the cell surface are processed through the signal-
ing network. Computational analysis has allowed us to
reverse-engineer the system and direct some of the
experimental work. Such analysis is important in allow-
ing us to fully understand complex biological networks
permitting reverse engineering to achieve desirable
outputs from biological systems.
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M.D. Anderson Cancer Center, Melanoma SPORE P50
CA093459 (PP-CDP3), and U.S. Department of Defense grant
BC044268 to P.T.R.
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Abstract

Background: In systems biology the experimentalist is presented with a selection of software for analyzing

dynamic properties of signaling networks. These tools either assume that the network is in steady-state or

require highly parameterized models of the network of interest. For biologists interested in assessing how signal

propagates through a network under specific conditions, the first class of methods does not provide sufficiently

detailed results and the second class requires models which may not be easily and accurately constructed. A tool

that is able to characterize the dynamics of a signaling network using an unparameterized model of the network

would allow biologists to quickly obtain insights into a signaling network’s behavior.

Results: We introduce PathwayOracle, an integrated suite of software tools for computationally inferring and

analyzing structural and dynamic properties of a signaling network. The feature which differentiates

PathwayOracle from other tools is a method that can predict the response of a signaling network to various

experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models

are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal

flows under different experimental conditions. In addition, PathwayOracle includes tools for the enumeration

and visualization of coherent and incoherent signaling paths between proteins, and for experimental

analysis—loading and superimposing experimental data, such as microarray intensities, on the network model.
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Conclusions: PathwayOracle provides an integrated environment in which both structural and dynamic analysis

of a signaling network can be quickly conducted and visualized along side experimental results. By using the

signaling network connectivity, analyses and predictions can be performed quickly using relatively easily

constructed signaling network models. The application has been developed in Python and is designed to be

easily extensible by groups interested in adding new or extending existing features. PathwayOracle is freely

available for download and use.

Background

Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell

biology. The scale and complexity of these networks, however, render their analysis using experimental

biology approaches alone very challenging. As a result, computational methods have been developed and

combined with experimental biology approaches, producing powerful tools for the analysis of these

networks. These tools aid biologists in interpreting existing experimental findings, evaluating hypotheses,

enumerating possible biological behaviors, and, ultimately, in quickly designing experiments that maximize

the amount of useful information gained. By assisting biologists in maximizing the amount of information

obtained from their experiments through improved experimental design and more thorough analysis of

results, computational tools increase the pace of scientific discovery.

Biological network analysis can generally be classified as either structural or dynamic [1]. Structural

analysis provides insights into global properties of the network, among them decomposition of the network

into functional modules (e.g., [2]), enumeration of signaling paths connecting arbitrary protein pairs

(e.g., [3–5]), and the identification of key pathways that determine the behavior of the network

(e.g., [2,6–10]). Dynamic methods, on the other hand, simulate the actual propagation of signals through a

network by predicting the changes in the concentration of signaling proteins over time. These predictions

will be of varying degrees of resolution and accuracy, depending largely on the accuracy and level of detail

of the model from which they are produced.

The prevailing methods for dynamic analysis involve systems of ordinary differential equations

(ODEs) [11,12]. These approaches require kinetic parameters for the individual biochemical reactions
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involved in the signaling process. This requirement often poses a significant hurdle for researchers as the

numerical values of such parameters are difficult to obtain and may be the object of the researcher’s

project in the first place. In [13], we presented a novel signaling network simulation method which uses a

non-parametric Petri net model of network to predict the signal flow under various experimental

conditions. Our simulation method uses a novel technique to approximate the interaction speeds and

predicts the qualitative behavior of the signaling network dynamics.

The advantage of our method over ODEs is the wide availability of connectivity-based models of signaling

networks, and the relative speed with which they can be constructed. Numerous databases exist which

catalog known signaling interactions (e.g., [14–16]). Thus, the existence and type (activating or inhibition)

of an interaction can often be inferred directly from literature and/or these databases. This presents a

stark contrast to the kinetic parameters required by ODEs, the numerical values for many of which must

be determined experimentally for each experimental condition and cell line of interest [2].

In this paper, we present the software tool PathwayOracle, an integrated environment for

connectivity-based structural and dynamic analysis of signaling networks, supporting

• visualization of signaling network connectivity;

• two versions of the simulation method described in [13] where

– the first allows prediction of signal flow through a given network for a specific experimental

condition, and

– the second predicts the difference in signal flow through a given network induced by two

different experimental conditions;

• enumeration of the paths connecting arbitrary pairs of nodes in the network; and

• visualization of experimental concentration data on the signaling network display.

In future releases we plan on expanding capabilities in all three areas of analysis—dynamic, structural, and

experimental—with a focus on providing effective ways of integrating results from each together.

PathwayOracle has been designed in a modular fashion in order to facilitate extension of existing

capabilities and the addition of new features.

Since PathwayOracle’s most distinctive analytical capability involves the signaling Petri net simulator, a

new dynamic analysis technique for signaling networks, we first provide an overview of the signaling Petri
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net modeling approach. Then in subsequent sections, we focus on PathwayOracle and explain the

architecture and core concepts underlying the tool and then examine the individual features, how they can

be used, and how they compare to existing tools.

The Signaling Petri Net Simulator

Petri nets provide a graphical and executable model of processes in which information or material flows

among a series of places or entities [17]. A Petri net consists of places, transitions, and tokens (see Figure

1). Quantities of tokens are assigned to individual places. This assignment is called a marking. As Figure 1

illustrates, the network flow is modeled by the reassignment of tokens to individual places in the Petri net

in response to transition firings.

A signaling Petri net is an extension of the Petri net formalism to model a signaling network. Places are

signaling proteins and transitions implement directed protein interactions; each transition models the effect

of a source protein on a target protein. The marking of (number of tokens in) protein p at time t is

interpreted as the activity-level of that protein—the number of activated molecules of that type. Figure 2

shows the correspondence between a signaling network and a signaling Petri net model.

The signaling Petri net simulator models signal flow as the pattern of token accumulation and dissipation

within proteins over time in the Petri net. Through transition firings, the source can influence the marking

of (the number of tokens assigned to) the target, modeling the way that signals propagate through protein

interactions in cellular signaling networks.

In order to overcome the issue of modeling reaction rates in the network, signaling dynamics are simulated

by executing the signaling Petri net (SPN) for a set number of steps (called a run) multiple times, each

time beginning at the same initial marking. For each run, the individual signaling rates are simulated via

generation of random orders of transition firings (interaction occurrences). When the results of a large

enough number of runs are averaged together, we find that the change in distribution of tokens in the

network correlate with experimentally measured changes in the activity-levels of individual proteins in the

underlying signaling network. In essence, the tokenized activity-levels computed by our method should be

taken as abstract quantities whose changes over time correlate to changes that occur in the amounts of

active proteins present in the cell. It is worth noting that some of the most widely used experimental

techniques for protein quantification—western blots and microarrays—also yield results that are treated as

indications, but not exact measurements, of protein activity-levels within the cell. Thus in some respects,

the predictions returned by our SPN-based simulator can be interpreted like the results of a western blot or
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microarray experiment looking at changes relative to “control”.

During a simulation run, the simulator imposes a strict ordering on transition firing such that it creates a

two-time scale simulation. The smaller time scale is discretized as the firing of a single transition. This

unit is referred to as the firing time scale. Firing steps are nested within a larger time scale, called time

blocks, within which each transition is fired exactly once. The values returned by the simulator are the

averaged token-counts for each protein at each time-block (across all runs).

Figure 3 provides a small example of a simulation run whose duration is two time blocks. As mentioned

previously, within a given time block, each transition fires exactly once. Thus, in the table (Figure 3(c)),

there is one column for each transition in each time block. The ordering of the transitions is shuffled in

each time block in order to sample a different set of signaling rates within the networks.

In the first time block, transition t2 fires first: it reads 2 tokens out of Grb2 and places 2 additional tokens

in Ras. Transition t1 fires second, reading 3 tokens out of Grb2. Transition t3 is evaluated last. The final

marking for the network, highlighted as the red column in block 1 is used by the simulator as the marking

for that block when averaging across runs.

At the conclusion of block 2, compare the values highlighted in red in the Initial column and at the end of

both blocks. Note how the distribution of tokens have changed over the course of the simulation. Grb2 has

the same number of tokens, implying that its activity-level has remained unchanged—this is consistent

with the signaling network since no activating or inhibiting edges affect it in the model. AKT’s token-count

has risen, consistent with the fact that it is only activated in the signaling network. Ras’s token-count has

fallen which is one plausible behavior of the system since it is activated by Grb2, but inhibited by AKT.

Implementation

PathwayOracle is written in Python [18]. The user experience is oriented around visualization of and

interaction with three main types of data: the signaling network, markings, and paths. At any given time,

one signaling network is open, which is the basis for all analyses. Any simulation or concentration data is

loaded and inspected as markings. Currently all static analyses revolve around paths, which are the third

data type. In the following subsections, these individual data types and the user interfaces to them are

discussed in more detail.
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The Signaling Network Model

While the implementation of our methods use the signaling Petri net model discussed in an earlier section

of this paper, we provide a simpler and more convenient representation of the network to the user which

omits the internal topology of the transitions and allows the user to specify interactions simply as either

activating or inhibiting. Thus, for the remainder of this paper we use the following definition of the

signaling network which is consistent with the experience the user will have when working with

PathwayOracle. The signaling network connectivity is a directed graph G = (V,E) where

• V is the set of nodes, which are signaling proteins and complexes (hereafter referred to collectively as

signaling nodes) and

• E is the set of edges, which are signaling interactions. Each edge is of one of two types: u → v for

activation and u ⊣ v for inhibition.

Within PathwayOracle, each signaling node has a name, unique within the network. A signaling edge has

no properties besides its type and is only defined by its source and target.

In order to facilitate the rapid construction of such signaling network models, we devised a file format

called the Connectivity Format. It is capable of expressing both general networks as well as paths. When

representing a network in the format, as shown in the example in Figure 4(b), one signaling interaction is

written on a line with the format

u -> v or u -| v

where u is the name of the source signaling node and v is the name of the target signaling node. Each node

is taken to represent the active form of the protein it is named for. Thus, from the example above, the

interaction PI-3-K→AKT means that the active form of PI-3-K increases the activity-level of AKT

whereas the interaction PTEN⊣AKT means that the active form of PTEN decreases the activity-level of

AKT. While these types of unparameterized relationships can be represented in SBML, SBML was

designed for encoding much more information than just connectivity [19]. As a result, we deemed it

appropriate to design a more concise format for our purposes. However, in a future release, PathwayOracle

will support loading and saving in the SBML format.

At a given point in time, only one signaling network can be open in PathwayOracle. The main window

displays a graphical representation of the network. The layout of the network can be modified by dragging
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nodes or by shift-clicking on edges to create, remove, or move waypoints. These layouts can be saved with

the network and loaded again.

Signaling Network Markings

In signaling networks, signal flow is measured and quantified as the fluctuation of concentrations of various

forms of signaling proteins over time. In PathwayOracle, we model concentrations using the concept of a

network marking, which was adapted from Petri nets in which it was first used [9].

Markings

In PathwayOracle, a marking, µ is an assignment of real values to the nodes of a signaling network such

that every signaling node receives a value. Earlier, the concept of a marking was introduced as the

assignment of tokens to protein places in the signaling Petri net. In a signaling Petri net, tokens are

discrete. In PathwayOracle, a marking is an average of the markings from many independent simulation

runs, which gives rise to the real, rather than integral values, assigned by the marking.

As discussed earlier, the value of the marking of a signaling node, µ(v), can be interpreted as an estimate

of the concentration or change in concentration of the active form of the signaling protein v (we call the

amount of the active form of the signaling protein its activity-level). The two different versions of the

simulator generate markings with these different meanings. The first simulator predicts the signal flow due

to an experimental condition and generates markings whose values are taken to represent the actual

activity-level of signaling protein present over the assumed basal levels. The second version of the

simulator predicts the difference in signaling due to changing experimental conditions. The values assigned

by markings produced by this simulator correspond to the change in the activity-level of the protein

induced by the change in experimental condition. This will be discussed further in the Results and

Discussion section.

Marking Series

In order to model signal flow, a single marking is not enough since it only provides a single snapshot of

concentrations throughout the network. A marking series is an sequence of markings, (µ1, µ2, ..., µT ) in

which the marking µt is a snapshot of the concentration distribution at time step t. Thus, it is possible to

see how the activity-level of protein v changed by plotting the values µ1(v), µ2(v), ..., µT (v). PathwayOracle

provides the ability to do this.
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PathwayOracle supports loading a marking series dataset from comma-separated value (.csv) files. As

shown in Figure 5(a), the file has a header row which specifies, for each column, the name of the molecule

whose concentration values will appear in that column. Each subsequent row contains the value

assignments for a marking: the second row contains the marking for time step 1, the third row contains the

marking for time step 2, and so on.

Marking Groups

In many experiments, the activity-level of various proteins are sampled at different time points and under

different experimental conditions. Since the marking series is not able to represent changes due to different

experimental conditions, we introduced the more general concept of a marking group in which each

marking can correspond to an arbitrary activity-level distribution. Each marking is given a descriptive

label that can be used to identify the conditions under which the activity-level was sampled.

Like the marking series, a marking group is loaded from a .csv file. However, unlike the marking series in

which each row corresponds to a time step, in the marking group, each row corresponds to an independent

marking (experimental condition). As shown in Figure 5(b), the first row is a header row specifying the

molecule names for each column, the first column specifies the names for the individual markings

(experimental conditions).

The Marking Manager

PathwayOracle includes a specific user-interface, the Marking Manager, designed to manage the three

different types of markings. The Marking Manager provides a central interface within which it is possible

to view all markings loaded and inspect them in ways that are relevant to their type (marking, marking

series, or marking group). The specific ways in which markings can be inspected will be discussed further

in the Results section.

Signaling Paths

The current structural analysis capabilities available in PathwayOracle allow inspection of signaling paths

within the network. A signaling path p is a sequence of nodes, (v1, v2, ..., vk) where vi ∈ V ∀1 ≤ i ≤ k, and

(vi, vi + 1) ∈ E ∀1 ≤ i < k. In this case, we say that node v1 is the source of path p, and node vk is the

target of p. Given a path, a variety of statistics may be of interest to the user. Additionally, it may be

useful to view the path within the larger network. PathwayOracle provides these capabilites which will be
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discussed in the Results and Discussion section.

Sets of paths can be saved to a file and loaded back into a session. Like networks, paths are also stored in

the Connectivity Format. When representing a set of paths, as shown in Figure 6, the full node names and

the edge types are written so that all path information is directly available within the file itself. One line

contains one path.

Results

PathwayOracle provides a variety of tools for analyzing the structural and dynamic properties of a

signaling network based on its connectivity. While its main differentiating feature is the ability to predict

signal flow through a network using only the connectivity of the signaling network, PathwayOracle also

provides the ability to visualize the network, analyze its connectivity, and inspect concentration-based

experimental data.

With the exception of the signaling Petri net simulator, PathwayOracle’s features can be found in various

combinations in other tools. Figure 7 provides a matrix of the features and capabilities of several tools

most commonly-used for signaling network analysis. While other tools support a variety of simulation

techniques, PathwayOracle, alone, provides non-parameterized simulation capabilities. It is worth noting

that the commercial software package CellIllustrator [20] provides Petri net-based simulation capabilities.

The difference between CellIllustrator and PathwayOracle Petri net approaches is the extensive set of

kinetic parameters required by CellIllustrator in order to simulate a biological system. In this regard,

hybrid functional Petri nets, the underlying technology used by CellIllustrator, are not significantly

different from ODEs.

Another important distinguishing characteristic of PathwayOracle is the combination of features that it

supports. Biological network analysis is a multi-faceted process that may involve structural, dynamic, and

data analysis in parallel. Whereas other tools tend to focus on one or two of these general areas of analysis,

we considered it important for PathwayOracle to incorporate all three in order to provide the researcher a

single environment in which all their analysis could be done. In future releases we plan to increase

PathwayOracle’s support for all three of these directions of investigation: structural, dynamic, and data

analysis.

In the remainder of this section, we discuss the features currently available in PathwayOracle.
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Network Visualization

As in many other computational analysis tools for signaling networks (e.g., [20, 21]), an interactive

graphical representation of the signaling network connectivity is at the center of the PathwayOracle

interface. The main window provides a visualization of the signaling network connectivity. This

visualization interface allows the user to edit the layout of the network by clicking on and dragging nodes

and by shift-clicking on edges to create, remove, or move waypoints. Waypoints are points that lie on an

edge. Holding down shift will display all edge waypoints. Existing waypoints can be dragged to change the

path that an edge follows. Right-clicking on a waypoint will remove it. Left-clicking on a straight segment

of the edge will create a new waypoint.

The network visualization also provides a view onto which path and experimental data analysis may be

mapped. As will be discussed in subsequent sections, selected paths may be highlighted in this view and

markings from experiments can set the colorings of individual nodes.

Network Signal Flow Simulation

The main feature differentiating PathwayOracle from other tools, such as CellDesigner [20] and

COPASI [22], is its ability to simulate signal flow using an unparameterized signaling network model.

Simulations can be performed in two different ways. In the first (Single Simulation), the simulator predicts

the signal flow through the network for a specific experimental condition. In the second (Differential

Simulation), the simulator predicts the difference in signal flow due to two different experimental

conditions on the same network. These simulation methods themselves are described in [13]. Here we focus

on how simulations are configured, run, and analyzed.

Whereas the consensus networks typically represent the connectivity in normal cells, many experiments are

conducted on abnormal cells in which oncogenic mutations, gene knockous, and pharmacological inhibitors

have altered the behavior of various signaling nodes in the network. In PathwayOracle users can model

these cell- and experiment-specific conditions by specifying each signaling node as either High, Low, or

Free. The High state models any condition under which a protein’s activity-level is held high for the

duration of the experiment. This may be due to external stimulation or a known mutation in the protein

that makes it constitutively active, for example. Similarly, a Low state models any phenomenon that forces

a protein to have a persistently suppressed activity-level. This may be due to mutations that render the

protein inactive, gene knockouts, or pharmacological inhibitors that force the activity-level of the protein

low. In general, most signaling nodes will be Free, which means that their activity-level is unconstrained
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throughout the simulation. Only those nodes designated as High or Low will have their activity-level fixed

for the duration of the simulation.

In order for a protein to be held high during the simulation, it is necessary to indicate the initial

activity-level that the protein will be elevated to. This is done by specifying the number of tokens that the

protein will receive. Since a protein with a High state cannot be inhibited (even if inhibitory edges target it

in the actual network), the protein’s activity level will never fall below this initial value. The initial value

for a High protein is indicated by placing it in parentheses next to the protein’s name, as shown in Figure 8.

Two other parameters that must be specified for a simulation are:

• the number of simulation runs to perform and

• the number of time blocks

The number of runs sets the number of independent simulations whose time block markings are averaged

together to yield the overall simulation markings. In general, using more runs is a tradeoff between

reliability of the results and simulation speed. In practice, the number of runs needed is dependent on the

signaling network model and should be selected by observing the reproducability of the simulation results.

An appropriate number of iterations will be large enough so that for a given experimental condition, the

results are very similar across multiple simulations.

The time block, as discussed earlier, is a fundamental unit of time in the simulator. The appropriate

number of time blocks for which to simulate will vary depending on the size of the signaling network and

the scale of the network behavior of interest. Generally it should be selected by running simulations for a

variety of time block values and determining which yields the most biologically reasonable activity-level

changes for a known protein. While this is a manual process in the current version of PathwayOracle, we

are investigating automated methods for estimating the number of time blocks by training against

experimental time series data.

In PathwayOracle, the setup window for the Single Simulation (see Figure 8(a)) prompts the user for a

single experimental condition. The setup window for the Differential Simulation (see Figure 8(b)) prompts

the user for two experimental conditions. Both simulators produce a marking series. The tokenized

simulation marking series corresponds to the activity-level time series predicted for the specified

experimental condition. The differential simulation marking series corresponds to the change in

activity-levels over time produced by switching from experimental condition 2 to experimental condition 1.

The marking series produced by a simulation can be accessed through the Marking Manager. Choosing to
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inspect a marking series will present the user with a blank plot. By selecting signaling nodes, the plot is

populated by the marking series values for individual nodes over time, as shown in Figure 8(c).

While this plot generation capability exists in many other dynamic simulation tools, the simplicity of the

model used for simulation and the speed with which a simulation runs set PathwayOracle apart from other

tools which require specification of the numerical values of kinetic parameters for each reaction in the

network of interest (e.g., [20, 22]). PathwayOracle, because of its novel approach, does not have such

requirements. It is worth noting, however, where PathwayOracle provides approximations of signal flow, an

ODE generates the actual concentration changes using extremely detailed and accurate models of the

underlying biochemistry. The simulators in PathwayOracle provide an attractive, time- and resource-saving

alternative this more exhaustively parameterized techniques. In particular, PathwayOracle’s features will

benefit researchers interested in quickly assessing characteristics of signal flow in their network.

For some networks, biologists will have partial knowledge of kinetic parameters or of other biological

details which the signaling Petri net model does not, at present, consider. By integrating this knowledge

into the simulator, it may be possible to improve the simulator’s predictions. We identify this as a

direction for future investigation. As the signaling Petri net simulator is extended, these new capabilities

will be incorporated in future releases of PathwayOracle.

Signaling Path Analysis

The use of the simulators and plotting tools allows the user to observe trends in the activity-level of

individual signaling nodes over time. Since the activity-level of a node is determined by the activity-level of

other nodes in the network, the activity-level time series of a node may be explained by changes in the

activity-level history of nodes upstream of it. In order to investigate such indirect interactions, it is useful

to enumerate all the paths leading from a specific protein to the protein of interest. PathwayOracle

provides this capability. Additionally, it provides various statistics on the set of paths linking two signaling

nodes as well as a classification of the effect of each path as either coherent or incoherent (e.g. [23]).

A coherent path is a directed series of interactions that leads from x to y such that an increase in the

activity-level of x causes an increase in the activity of y and a decrease in the activity-level of x causes a

decrease in the activity-level of y. An incoherent path is a directed series of interactions leading from x to

y such that an increase in the activity-level of x causes a decrease in the activity-level of y and a decrease

in the activity-level of x causes a increase in the activity-level of y. It is possible to classify a path p as

either coherent or incoherent by counting the number of inhibitory edges along p. A path with an even
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number of inhibitory edges is coherent; a path with an odd number of inhibitory edges is incoherent [5].

This logic is assumed in PathwayOracle. All simple paths (paths without loops) connecting two specified

signaling nodes are enumerated by an exhaustive depth-first search. These paths then are classified as

either coherent or incoherent, and presented to the user for further inspection in a window similar to the

one shown in Figure 9(a). When a path is selected in the results window, it is highlighted in the main

window, allowing the user to evaluate it within the context of the complete network (see Figure 9(b)).

Experimental Data Analysis

A model of the connectivity of a signaling network makes it possible to identify components of the model

that are inconsistent with experimental data or visa versa. PathwayOracle enables this kind of analysis by

allowing users to load experimental concentration data and visualize it both as a heatmap (see Figure

10(a)) or superimposed on the network view (see Figure 10(b)). Several other software tools provide

similar capabilities (e.g., [21]). In PathwayOracle, experimental concentration data is loaded as a marking

group in which a single marking corresponds to a condition for which concentrations were sampled. Figure

10(a) shows a marking group with 24 conditions (rows). The concentration of seven signaling proteins were

sampled for each condition. This is the heatmap view for the marking group. When a specific marking in

the group is selected, the colors for that marking are applied to the network view. This is particularly

useful when assessing whether the experimental data is consistent with the interactions in the model. In

Figure 10, the MDA231-B-DMSO2 marking has been superimposed on the network. We can see that RSK

has a relatively low concentration despite the high concentration of MAPK. Given that, in the model, RSK

is activated by MAPK, this combination of activity-levels seems unlikely to occur. Such an inconsistency

suggests that there may be other signaling interactions contributing to the overall activity-level of RSK.

Such an insight can help a researcher quickly identify areas where the model or experimental results need

to be re-evaluated or improved.

Future Directions

Our goal is to develop PathwayOracle into an integrated and expansive suite of tools that allow the

biologist to extract as much information as possible from models of signaling network connectivity and

experimental data relating to those models. We consider future directions for PathwayOracle to fall into

several categories: network construction, network augmentation, experimental and computational analysis

integration, and architecture.
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One of the benefits of working with connectivity models of signaling networks is the abundance of

databases and other online resources that publish connectivity-level data. Future versions of

PathwayOracle will have support for querying such databases for connectivity components and, ultimately,

for automated connectivity construction based on a set of signaling nodes specified by the user.

Analysis of network connectivity and topology is increasingly relevant to biological research. We intend to

expand PathwayOracle’s structural analysis features to include the ability to search for and identify motifs

in the signaling networks.

Network connectivity can also be inferred from experimental data, which provides another direction for

research and development. By using experimental results to identify inconsistencies between experimental

results and the current network model, it may be possible for PathwayOracle to augment the network with

new connectivity based on hints supplied by experimental results. At present only experimental

concentration data is supported. However, as experiments produce more information beyond concentration

profiles of signaling nodes, we plan to expand the experimental data that PathwayOracle can load,

visualize, and use as part of network analyses.

Experimental results can also provide computational analysis methods information that can improve their

final predictions or decompositions. Taking advantage of the additional, potentially obfuscated,

information present in experimental results to improve the results returned by computational tools is a

major goal for future versions of PathwayOracle.

A longer term direction for PathwayOracle is the integration of transcriptional and metabolic network

analysis. In the biological systems of interest, the behavior of any one of these networks is dependent on

the characteristics of the other two. As a result, developing a complete understanding of signaling,

transcriptional regulation, or metabolism depends in part on integrating knowledge from the others.

Finally, an ongoing priority in the design of PathwayOracle is its role as an open platform for the

development and deployment of new analytical capabilities by other groups. Currently PathwayOracle

employes a modular architecture that facilitates easy integration of new functionality. However, in future

releases we plan to expose a plugin interface which will make it easier to developers and researchers to

develop and deploy tools within PathwayOracle.

Conclusions

PathwayOracle is an integrated software environment in which biologists may conduct structural and

dynamic analysis of signaling networks of interest. PathwayOracle is distinguished from other tools in the
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field of systems biology by its ability to predict the signal flow through a network using a simplified,

connectivity-based model of the signaling network. Simulations are fast and, based on a published study,

predictors of signal propagation. This novel simulation capability, combined with support for structural

analysis of connectivity between pairs of proteins and for analysis of certain kinds of experimental data

make PathwayOracle a powerful asset in the experimentalist’s endeavor to gain a more complete

understanding of the cellular signaling network.

Availability and requirements

Project name: PathwayOracle
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Figure 1: An example of how tokens move among places. In a Petri net, quantities of tokens are assigned to
places. In (a), three tokens are assigned to place pA and zero tokens are assigned to place pB . The two places are
connected by a transition, t1. The arcs in and out of t1 indicate the direction in which tokens move. When t1 fires,
it moves some number of tokens from pA and puts them in pB . In (b), transition t1 has fired and moved two tokens
from pA to pB .

Figure 2: An example signaling network and its corresponding Petri net. An example signaling network
(a) and its corresponding Petri net (b). Each signaling protein in the network, A, B, and C, is designated as a place
pA, pB , and pC . A signaling interaction becomes a transition node and its input and output arcs. Note that the
connectivity for an activating edge differs from that of an inhibitory edge.

Figure 3: An example signaling Petri net simulation. (a) is the signaling network being simulated. (b) is the
signaling Petri net that models that signaling Petri net. The table in (c) provides the markings for the Petri net over
the course of a simulation run whose duration is two time blocks. The proteins are given the initial marking shown
in the Initial column. Each subsequent column corresponds to a single time step during which one transition fired,
producing a new marking of the network. The bold number in each column indicates which protein’s marking was
affected by the transition that fired in that time step. The red columns—always the last time step in the block—
highlight the markings whose values would be averaged and used as part of the final result. These red columns are
the sources of the markings that PathwayOracle reports.

Figure 4: An example of a Network in the Connectivity Format. (a) A graphical representation of a signaling
network’s connectivity. (b) The signaling network in (a) written in the Network Connectivity Format.

Figure 5: Examples of marking series and group file formats. (a) An example marking series dataset in
the comma-separated value file format. The first row specifies the signaling proteins whose concentrations were
measured. Each row thereafter specifies the concentration for a given time step: row i specifies the concentrations for
each signaling protein at time step i − 1. (b) An example marking group dataset in the comma-separated value file
format. The first row specifies the signaling proteins whose concentrations were measured. The first column specifies
the names for each marking in the group dataset. The numbers in each row specify the concentration measured for
each signaling protein in that marking.

Figure 6: An example of a Path in the Connectivity Format. (a) A graphical representation of two signaling
paths. (b) The signaling paths in (a) represented in the Connectivity Format. Each line corresponds to a single
signaling path.

Figure 7: A comparison of features supported by tools commonly used for signaling network analysis.
The table shows the features and analytical capabilities supported by different tools commonly used for the analysis of
signaling networks. Tools included in the comparison are: CellDesigner [20], CellIllustrator [24], CellNetAnalyze [25],
COPASI [22], Cytoscape [21], the System Biology Toolkit for Matlab [26], and PathwayOracle.

Figure 8: The tokenized simulator user interface. (a) The setup window for the tokenized simulator. The
simulation is being configured to have two High nodes, EGF and LKB-auto. EGF will be initialized with a token-
count of 10, LKB-auto with a token-count of 3. The token-count of AMPK will be zero for the duration of the
simulation. (b) The setup window for the differential simulator. Two different scenarios are being compared through
simulation: different token assignments are being tried with EGF and LKB-auto, with and without AMPK being
fixed low. (c) The plot window for the marking series generated by a simulation. Observe that the signaling nodes
whose activity-levels are plotted correspond to those selected in the checklist directly to the left of the plot.

Figure 9: The path interrogation user interface. (a) The result window enumerating the set of all paths
between Ras and mTOR/raptor. (b) The main network view showing the selected path highlighted.
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Figure 10: The marking group user interface. (a) The heat map visualization of a marking group. The selected
marking, MDA231-B-DMSO1, is highlighted in blue. (b) The color distribution for the selected marking in the group
is applied to the network view in the main window. Note that signaling nodes for which values were not given are
not assigned a color on the valid red to green spectrum.
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